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E Expressiveness and
Complexity

Various query languages were presented in Parts B and D. Simple languages like
conjunctive queries were successively augmented with various constructs such as

union, negation, and recursion. The primary motivation for defining increasingly powerful
languages was the need to express useful queries not captured by the simpler languages. In
the presentation, the process was primarily example driven. The following chapters present
a more advanced and global perspective on query languages. In addition to their ability to
express specific queries, we consider more broadly the capability of languages to express
queries of a given complexity. This leads to establishing formal connections between
languages and complexity classes of queries. This approach lies on the border between
databases, complexity theory, and logic. It is related to characterizations of complexity
classes in terms of various logics.

The basic framework for the formal development is presented in Chapter 16, in which
we discuss the notion of a query and produce a formal definition. It turns out that it
is relatively easy to define languages expressing all queries. Such languages are called
complete. However, the real challenge for the language designer is not simply to define
increasingly powerful languages. Instead an important aspect of language design is to
achieve a good balance between expressiveness and the complexity of evaluating queries.
The ideal language would allow expression of most useful queries while guaranteeing that
all queries expressible in the language can be evaluated with reasonable complexity. To
formalize this, we raise the following basic question: How does one evaluate a query
language with respect to expressiveness and complexity? In an attempt to answer this
question, we discuss the issue of sizing up languages in Chapter 16.

Chapter 17 considers some of the classes of queries discussed in Part B from the
viewpoint of expressiveness and complexity. The focus is on the relational calculus of
Chapter 5 and on its extensions fixpoint and while defined in Chapter 14. We show the
connection of these languages to complexity classes. Several techniques for showing the
nonexpressibility of queries are also presented, including games and 0-1 laws.

Chapter 17 also explores the intriguing theoretical implications of one of the basic as-
sumptions of the pure relational model—namely, that the underlying domain dom consists
of uninterpreted, unordered elements. This assumption can be viewed as a metaphor for
the data independence principle, because it implies using only logical properties of data as
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416 Expressiveness and Complexity

opposed to the underlying implementation (which would provide additional information,
such as an order).

Chapter 18 presents highly expressive (and complex) languages, all the way up to com-
plete languages. In particular, we discuss constructs for value invention, which are similar
to the object creation mechanisms encountered in object languages (see Chapter 21).

For easy reference, the expressiveness and complexity of relational query languages
are summarized at the end of Chapter 18.



16 Sizing Up Languages

Alice: Do you ever worry about how hard it is to answer queries?
Riccardo: Sure—my laptop can only do conjunctive queries.

Sergio: I can do the while queries on my Sun.
Vittorio: I don’t worry about it—I have a Cray in my office.

This chapter lays the groundwork for the study of the complexity and expressiveness
of query languages. First the notion of query is carefully reconsidered and formally

defined. Then, the complexity of individual queries is considered. Finally definitions that
allow comparison of query languages and complexity classes are developed.

16.1 Queries

The goal of Part E is to develop a general understanding of query languages and their
capabilities. The first step is to formulate a precise definition of what constitutes a query.
The focus is on a fairly high level of abstraction and thus on the mappings expressible by
queries rather than on the syntax used to specify them. Thus, unlike Part B, in this part we
use the term query primarily to refer to mappings from instances to instances rather than to
syntactic objects. Although there are several correct definitions for the set of permissible
queries, the one presented here is based on three fundamental assumptions: well-typedness,
computability, and genericity.

The first assumption involves the schemas of the input and the answer to a query. A
query is over a particular database schema, say R. It takes as input an instance over R
and returns as answer a relation over some schema S. In principle, it is conceivable that
the schema of the result may be data dependent. However, to simplify, it is assumed here
(as in most query languages) that the schema of the result is fixed for a given query. This
assumption is referred to as well-typedness. Thus, for us, a query is a partial mapping from
inst(R) to inst(S) for fixed R and S. By allowing partially defined mappings, we account
for queries expressed by programs that may not always terminate.

Because we are only interested in effective queries, we also make the natural assump-
tion that query mappings are computable. Query computability is defined using classical
models of computation, such as Turing machines (TM). The basic idea is that the query
must be “implementable” by a TM. Thus there must exist a TM that, given as input a nat-
ural encoding of a database instance on the tape, produces an encoding of the output. The
formalization of these notions requires some care and is done next.

417
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P Q
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(a)

P[0#1][1#0]Q[10#10]

(b)

Figure 16.1: An instance I and its TM encoding with respect to α = abc

The first question in developing the formalization is, How can input and output in-
stances be represented on a TM tape that has finite alphabet when the underlying domain
dom is infinite? We resolve this by using standard encodings for dom. As we shall see later
on, although this permits us to use conventional complexity theory in our study of query
language expressiveness, it also takes us a bit outside of the pure relational model.

We focus on encodings of both dom and of subsets of dom, and we use the symbols 0
and 1. Let d⊆ dom and let α = {d0, d1, . . . , di, . . .} be an enumeration of d. The encoding
of d relative to α is the function encα, which maps di to the binary representation of i (with
no leading zeros) for each di ∈ d. Note that |encα(di)| ≤ #log i$ for each i.

We can now describe the encoding of instances. Suppose that a set d ⊆ dom, enu-
meration α for d, source schema R = {R1, . . . , Rm}, and target schema S are given. The
encoding of instances of R uses the alphabet {0, 1, [, ], #} ∪R ∪ {S}. An instance I over R
with adom(I)⊆ d is encoded relative to α as follows:

1. encα(〈a1, . . . , ak〉) is [encα(a1)# . . . #encα(ak)].

2. encα(I(R)), for R ∈ R, is R encα(t1) . . . encα(tl), where t1, . . . , tl are the tuples in
I(R) in the lexicographic order induced by the enumeration α.

3. encα(I)= encα(I(R1)) . . . encα(I(Rm)).

Example 16.1.1 Let R = {P,Q}, I be the instance over R in Fig. 16.1(a), and let α =
abc. Then encα(I) is shown in Fig. 16.1(b).

Let α be a fixed enumeration of dom. In this case the encoding encα described earlier
is one-to-one on instances and thus has an inverse enc−1

α when considered as a mapping
on instances. We are now ready to formalize the notion of computability relative to an
encoding of dom.

Definition 16.1.2 Let α be an enumeration of dom. A mapping q from inst(R) to
inst(S) is computable relative to α if there exists a TM M such that for each instance I
over R
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(a) if q(I) is undefined, then M does not terminate on input encα(I), and

(b) if q(I) is defined, M halts on input encα(I) with output encα(q(I)) on the tape.

As will be seen shortly, the third assumption about queries (namely, genericity) will
permit us to reformulate the preceding definition to be independent of the encoding of
dom used. Before introducing that notion, we consider more carefully the representation
of database instances on TM tapes. In some sense, TM encodings on the tape are similar
to the internal representation of the database on some physical storage. In both cases, the
representation contains more information than the database itself. In the case of the TM
representation, the extra information consists primarily of the enumeration α of constants
necessary to define encα. In the pure relational model, this kind of information is not part of
the database. Instead, the database is an abstraction of its internal (or TM) representation.
This additional information can be viewed as noise associated with the internal representa-
tion and thus should not have any visible impact for the user at the conceptual level. This is
captured by the data independence principle in databases, which postulates that a database
provides an abstract interface that hides the internal representation of data.

We can now state the intuition behind the third and last requirement of queries, which
formalizes the data independence principle. Although computations performed on the in-
ternal representation may take advantage of all information provided at this level, it is ex-
plicitly prohibited, in the definition of a query, that the result depend on such information.
(In some cases this restriction may be relaxed; see Exercise 16.4.)

For example, consider a database that consists of a binary relation specifying the edges
of a directed graph. Consider a query that returns as answer a subset of the vertexes in the
graph. One can imagine queries that extract (1) all vertexes with positive in-degree, or (2)
all vertexes belonging to some cycle, or (3) the first vertex of the graph as presented in the
TM tape representation. Speaking intuitively, (1) and (2) are independent of the internal
representation used, whereas (3) depends on it. Queries such as (3) will be excluded from
the class of queries.

The property that a query depends only on information provided by the input instance
is called genericity and is formalized next. The idea is that the constants in the database
have no properties other than the relationships with each other specified by the database.
(In particular, their internal representation is irrelevant.) Thus the database is essentially un-
changed if all constants are consistently renamed. Of course, a query can always explicitly
name a finite set of constants, which can then be treated differently from other constants.
(The set of such constants is the set C in Definition 16.1.3.)

A permutation of dom is a one-to-one, onto mapping from dom to dom. As done
before, each mapping ρ over dom is extended to tuples and database instances in the
obvious way.

Definition 16.1.3 Let R and S be database schemas, and let C be a finite set of con-
stants. A mapping q from inst(R) to inst(S) is C-generic iff for each I over R and each
permutation ρ of dom that is the identity on C, ρ(q(I))= q(ρ(I)). When C is empty, we
simply say that the query is generic.
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The previous definition is best visualized using the following commuting diagram:

I
q−→ q(I)�ρ �ρ

ρ(I)
q−→ ρ(q(I))= q(ρ(I)).

In other words, a query is C-generic if it commutes with permutations (that leave C fixed).
Genericity states that the query is insensitive to renaming of the constants in the

database (using the permutation ρ). It uses only the relationships among constants provided
by the database and is independent of any other information about the constants. The set C
specifies the exceptional constants named explicitly in the query. These cannot be renamed
without changing the effect of the query.

Permutations ρ for which ρ(I)= I are of special interest. Such ρ are called automor-
phisms for I. If ρ is an automorphism for I and ρ(a)= b, this says intuitively that a and
b cannot be distinguished using the structure of I. Let q be a generic query, I an instance,
and ρ an automorphism for I. Then, by genericity,

ρ(q(I))= q(ρ(I))= q(I),

so ρ is also an automorphism for q(I). In particular, a generic query cannot distinguish
between constants that are undistinguishable in the input (see Exercise 16.5). Of course,
this is not the case if the query explicitly names some constants.

We illustrate these various aspects of genericity in an example.

Example 16.1.4 Consider a database over a binary relation G holding the edges of a
directed graph. Let I be the instance {〈a, b〉, 〈b, a〉, 〈a, c〉, 〈b, c〉}.

Let σ be the CALC query

{〈x〉 | ∃yG(x, y)}.

Note that σ(I)= {〈a〉, 〈b〉}. Let ρ be the permutation defined by ρ(a)= b, ρ(b)= c, and
ρ(c) = d . Then ρ(I) = {〈b, c〉, 〈c, b〉, 〈b, d〉, 〈c, d〉}. Genericity requires that σ(ρ(I)) =
{〈b〉, 〈c〉}. This is true in this case.

Note also that a and b are undistinguishable in I. Formally, the renaming ρ defined by
ρ(a)= b, ρ(b)= a, and ρ(c)= c has the property that ρ(I)= I and thus is an automor-
phism of I. Let q be a generic query onG. By genericity of q, either a and b both belong to
q(I), or neither does. Thus a generic query cannot distinguish between a and b. Of course,
this is not true forC-generic queries (forC nonempty). For instance, let qb = π1(σ2=b(G)).
Now qb is {b}-generic, and qb(I)= {〈a〉}. Thus qb distinguishes between a and b.

It is easily verified that if a database mapping q is C-generic, then for each input
instance I, adom(q(I))⊆ C ∪ adom(I) (see Exercise 16.1).
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In most cases we will ignore the issue of constants in queries because it is not central.
Note that a C-generic query can be viewed as a generic query by including the constants in
C in the input, using one relation for each constant. For instance, the {b}-generic query qb
overG in Example 16.1.4 is reduced to a generic query q ′ over {G,Rb}, where Rb = {〈b〉},
defined as follows:

q ′ = π1(σ2=3(G× Rb)).

In the following, we will usually assume that queries have no constants unless explicitly
stated.

Suppose now that α and β are two enumerations of dom and that a generic mapping
q from R to S is computed by a TM M using encα. It is easily verified that the same query
is computed by M if encβ is used in place of encα (see Exercise 16.2). This permits us to
adopt the following notion of computable, which is equivalent to “computable relative to
enumeration α” in the case of generic queries. This definition has the advantage of relying
on finite rather than infinite enumerations.

Definition 16.1.5 A generic mapping q from inst(R) to inst(S) is computable if there
exists a TM M such that for each instance I over R and each enumeration α of adom(I),

(a) if q(I) is undefined, then M does not terminate on input encα(I), and

(b) if q(I) is defined, M halts on input encα(I) with output encα(q(I)) on the tape.

We are now ready to define queries formally.

Definition 16.1.6 Let R be a database schema and S a relation schema. A query from
R to S is a partial mapping from inst(R) to inst(S) that is generic and computable.

Note that all queries discussed in previous chapters satisfy the preceding definition
(modulo constants in queries).

Queries and Query Languages

We are usually interested in queries specified by the expressions (i.e., syntactic queries
or programs) of a given query language. Given an expression E in query language L, the
mapping between instances thatE describes is called the effect ofE. Depending on the lan-
guage, there may be several alternative semantics (e.g., inflationary versus noninflationary)
for defining the query expressed by an expression. A related issue concerns the specifica-
tion of the output schema of an expression. In calculus-based languages, the output schema
is unambiguously specified by the form of the expression. The situation is more ambigu-
ous for other languages, such as datalog and while. Programs in these languages typically
manipulate several relations and may not specify explicitly which is to be taken as the an-
swer to the query. In such cases, the concepts of input, output, and temporary relations
may become important. Thus, in addition to semantically significant input and output re-
lations, the programs may use temporary relations whose content is immaterial outside the
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computation. We will state explicitly which relations are temporary and which constitute
the output whenever this is not clear from the context.

A query language or computing device is called complete if it expresses all queries.
We will discuss such languages in Chapter 18.

16.2 Complexity of Queries

We now develop a framework for measuring the complexity of queries. This is done by
reference to TMs and classical complexity classes defined using the TM model.

There are several ways to look at the complexity of queries. They differ in the param-
eters with respect to which the complexity is measured. The two main possibilities are as
follows:

• data complexity: the complexity of evaluating a fixed query for variable database
inputs; and

• expression complexity: the complexity of evaluating, on a fixed database instance,
the various queries specifiable in a given query language.

Thus in the data complexity perspective, the complexity is with respect to the database
input and the query is considered constant. Conversely, with expression complexity, the
database input is fixed and the complexity is with respect to the size of the query expression.
Clearly, the measures provide different information about the complexity of evaluating
queries. The usual situation is that the size of the database input dominates by far the size
of the query, and so data complexity is typically most relevant. This is the primary focus of
Part E, and we use the term complexity to refer to data complexity unless otherwise stated.

The complexity of queries is defined based on the recognition problem associated with
the query. For a query q, the recognition problem is as follows: Given an instance I and a
tuple u, determine if u belongs to the answer q(I). To be more precise, the recognition
problem of a query q is the language

{encα(I)#encα(u) | u ∈ q(I), α an enumeration of adom(I)}.

The (data) complexity of q is the (conventional) complexity of its recognition problem.
Technically, the complexity is with respect to the size of the input [i.e., the length of the
word encα(I)#encα(u)]. Because for an instance I the size (number of tuples) in I is closely
related to the length of encα(I) (see Exercise 16.12), the size of I is usually taken as the
measure of the input.

For each Turing time or space complexity class c, one can define a corresponding
complexity class of queries, denoted by qc . The class of queries qc consists of all queries
whose recognition problem is in c. For example, the class qptime consists of all queries
for which the recognition problem is in ptime.

There is another way to define the complexity of queries that is based on the com-
plexity of actually constructing the result of the query rather than the recognition problem
for individual tuples. The two definitions are in most cases interchangeable (see Exer-
cise 16.13). In particular, for complexity classes insensitive to a polynomial factor, the
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definitions are equivalent. In general, the definition based on constructing the result dis-
tinguishes between a query with a large answer and one with a small answer, which is
irrelevant to the definition based on recognition. On the other hand, the definition based
on constructing the result may not distinguish between easy and hard queries with large
results.

Example 16.2.1 Consider a database consisting of one binary relation G and the three
queries cross, path, and self on G defined as follows:

cross(G)= π1(G)× π2(G),

path(G) = {〈x, y〉 | x and y are connected by a path in G},
self (G) =G.

Consider first cross and path. Both have potentially large answers, but cross is clearly
easier than path, even though the time complexity of constructing the result is O(n2) for
both cross and path. The time complexity of the recognition problem is O(n) for cross
and O(n2) for path. Thus the measure based on constructing the result does not detect
a difference between cross and path, whereas this is detected by the complexity of the
recognition problem. Next consider cross and self . The time complexity of the recognition
problem is in both cases O(n), but the complexity of computing the result is O(n) for self
whereas it is O(n2) for cross. Thus the complexity of the recognition problem does not
distinguish between cross and self , although cross can potentially generate a much larger
answer. This difference is detected by the complexity of constructing the result.

In Part E, we will use the definition of query complexity based on the associated
recognition problem.

16.3 Languages and Complexity

In the previous section we studied a definition of the complexity of an individual query.
To measure the complexity of a query language L, we need to establish a correspondence
between

• the class of queries expressible in L, and

• a complexity class qc of queries.

Expressiveness with Respect to Complexity Classes

The most straightforward connection between L and a class of queries qc is when L and
qc are precisely the same.1 In this case, it is said that L expresses qc. In every case, each
query in L has complexity c, and conversely L can express every query of complexity c.

1 By abuse of notation, we also denote by L the set of queries expressible in L.
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Ideally, one would be able to perform complexity-tailored language design; that is,
for a desired complexity c, one would design a language expressing precisely qc. Unfor-
tunately, we will see that this is not always possible. In fact, there are no such results for
the pure relational model for complexity classes of polynomial time and below, that are of
most interest. We consider this phenomenon at length in the next chapter. Intuitively, the
shapes of classes of queries of low complexity do not match those of classes of queries de-
fined by any known language. Therefore we are led to consider a less straightforward way
to match languages to complexity classes.

Completeness with Respect to Complexity Classes

Consider a language L that does not correspond precisely to any natural complexity class
of queries. Nonetheless we would like to say something about the complexity of queries in
L. For instance, we may wish to guarantee that all queries in L lie within some complexity
class c, even though L may not express all of qc. For the bound to be meaningful, we
would also like that c is, in some sense, a tight upper bound for the complexity of queries
in L. In other words, L should be able to express at least some queries that are among
the hardest in qc. The property of a problem being hardest in a complexity class c is
captured, in complexity theory, by the notion of completeness of the problem in the class
(see Chapter 2). By extension to a language, this leads to the following:

Definition 16.3.1 A language L is complete with respect to a complexity class c if

(a) each query in L is also in qc, and

(b) there exists a query in L for which the associated recognition problem is com-
plete with respect to the complexity class c.

As in the classical definition of completeness of a problem in a complexity class,
we qualify, when necessary, the notion of a completeness in a complexity class by the
complexity of the reduction. For instance, L is logspace complete with respect to c qualifies
(b) by stating that the query expressible in L whose recognition problem is complete in c
is in fact logspace complete in c.

In some sense, completeness without expressiveness says something negative about
the language L. L can express some queries that are as hard as any query in qc; on the
other hand, there may be easy queries in qc that are not expressible in L. This may at first
appear contradictory because L expresses some queries that are complete in c, and any
problem in c can be reduced to the complete problem. However, there is no contradiction.
The reduction of the “easy” query to the complete query may be computationally easy but
nevertheless not expressible in L. Examples of this situation involve the familiar languages
fixpoint and while. As will be shown in Section 17.3, these languages are complete in ptime
and pspace, respectively. However, neither can express the simple parity query on a unary
relation R:

even(R)= true if |R| is even, and false otherwise.
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Complexity and Genericity

To conclude this chapter, we consider the delicate impact of genericity on complexity.
The foregoing query even illustrates a fundamental phenomenon relating genericity to the
complexity of queries. As stated earlier, even cannot be computed by fixpoint or by while,
both of which are powerful languages. The difficulty in computing even is due to the lack
of information about the elements of the set. Because the database only provides a set
of undifferentiated elements, genericity implies that they are treated uniformly in queries.
This rules out the straightforward solution of repeatedly extracting one arbitrary element
from the set until the set is empty while keeping a binary counter: How does one specify
the first element to be extracted?

On the other hand, consider the problem of computing even with a TM. The additional
information provided by the encoding of the input on the tape makes the problem trivial
and allows a linear-time solution.

This highlights the interesting fact that genericity may complicate the task of com-
puting a query, whereas access to the internal representation may simplify this task con-
siderably. Thus this suggests a trade-off between genericity and complexity. This can be
formalized by defining complexity classes based on a computing device that is generic by
definition in place of a TM. Such a device cannot take advantage of the representation of
data in the same manner as a TM, and it treats data generically at all points in the com-
putation. It can be shown that even is hard with respect to complexity measures based on
such a device. The query even will be used repeatedly to illustrate various aspects of the
complexity of queries.
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Exercises

Exercise 16.1 Let q be a C-generic mapping. Show that, for each input instance I, adom(q(I))
⊆ C ∪ adom(I).

Exercise 16.2 (Genericity) Let q be a generic database mapping from R to S.

(a) Let α and β be enumerations of dom, and suppose that M computes q using encα.
Prove that for each instance I over R,

encα ◦M ◦ enc−1
α = encβ ◦M ◦ enc−1

β .

Conclude that M computes q using encβ .

(b) Verify that the definitions of computable relative to α and computable are equivalent
for generic database mappings.

.Exercise 16.3 Let R be a database schema and S a relation schema.

(a) Prove that it is undecidable to determine, given TM M that computes a mapping q
from inst(R) to inst(S) relative to enumeration α of dom, whether q is generic.

(b) Show that the set of TMs that compute queries from R to S is co-r.e.

Exercise 16.4 In many practical situations the underlying domains used (e.g., strings, inte-
gers) have some structure (e.g., an ordering relationship that is visible to both user and imple-
mentation). For each of the following, develop a natural definition for generic and exhibit a
nongeneric query, if there is one.

(a) dom is partitioned into several sorts dom1, . . . ,domn.

(b) dom has a dense total order ≤. [A total order ≤ is dense if ∀x, y(x < y→∃z(x <
z ∧ z < y)).]

(c) dom has a discrete total order ≤. [A total order ≤ is discrete if ∀x[∃y(x < y→
∃z(x < z ∧ ¬∃w(x < w ∧ w < z))) ∧ ∃y(y < x→∃z(z < x ∧ ¬∃w(z < w ∧ w <
x)))].]

(d) dom is the set of nonnegative integers and has the usual ordering ≤.

Exercise 16.5 Let q be a C-generic query, and let I be an input instance. Let ρ be an automor-
phism of I that is the identity on C, and let a, b be constants in I, such that ρ(a)= b. Show that
a occurs in q(I) iff b occurs in q(I).

The next several exercises use the following notions. Let R be a database schema. Let k be
a positive integer and I an instance over R. 8I

k denotes the set of k-tuples that can be formed
using just constants in I. Define the following relation ≡I

k on 8I
k: u ≡I

k v iff there exists an
automorphism ρ of I such that ρ(u)= v. The k-type index of I, denoted #k(I), is the number of
equivalence classes of ≡I

k.
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Exercise 16.6 (Equivalence induced by automorphisms) Let R be a database schema and I an
instance of R.

(a) Show that ≡I
k is an equivalence relation on 8I

k.

(b) Let q be a generic query on R, whose output is a k-ary relation. Show that q(I) is a
union of equivalence classes of ≡I

k.

♠Exercise 16.7 (Type index) Let G be a binary relation schema corresponding to the edges of
a directed graph. Show the following:

(a) The k-type index of a complete graph is a constant independent of the size of the
graph, as long as it has at least k vertexes.

(b) The k-type index of graphs consisting of a simple path is polynomial in the size of
the graph.

(c) [Lin90, Lin91] The k-type index of a complete binary tree is polynomial in the depth
of the tree.

Exercise 16.8 Let k, n be integers, 0< n < k, and I an instance over schema R.

(a) Show how to compute ≡I
n from ≡I

k.

(b) Prove that #n(I) < #k(I), unless I has just one constant.

.Exercise 16.9 (Fixpoint queries and type index) Let ϕ be a fixpoint query on database schema
R. Show that there exists a polynomial p such that, for each instance I over R, ϕ on input I
terminates after at most p(#k(I)) steps, for some k > 0.

♠Exercise 16.10 (Fixpoint queries on special graphs) Show that every fixpoint query terminates
in

(a) constant number of steps on complete graphs;

(b) [Lin90, Lin91] p(log(|I|)) number of steps on complete binary trees I, for some
polynomial p. Hint: Use Exercises 16.7 and 16.9.

♠Exercise 16.11 [Ban78, Par78] Let R be a schema, I a fixed instance over R, and a1, . . . , an
an enumeration of adom(I). For each automorphism ρ on I, let tρ = 〈ρ(a1), . . . , ρ(an)〉, and let

auto(I)= {tρ | ρ an automorphism of I}.

(a) Prove that there is a CALC query q with no constants (depending on I) such that
q(I)= auto(I).

(b) Prove that for each relation schema S and instance J over S with adom(J ) ⊆
adom(I),

there is a CALC query q with no constants
(depending on I and J )

such that q(I)= J
iff

for each automorphism ρ of I, ρ(J )= J .

A query language is called bp-complete if it satisfies the “if” direction of part (b).
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Exercise 16.12 (Tape encoding of instances) Let I be a nonempty instance of a database
schema R. Let nc be the number of constants in I, nt the number of tuples, and α an enumeration
of the constants in I. Show that there exist integers k1, k2, k3 depending only on R such that

(a) nc ≤ k1nt ≤ |encα(I)|,
(b) |encα(I)| ≤ k2nt log(nt),

(c) |encα(I)| ≤ (nc)
k3.

Exercise 16.13 (Recognition versus construction complexity) Let f be a time or space bound
for a TM, and let q be a query. The notation r-complexity abbreviates the complexity based on
recognition, and a-complexity stands for complexity based on constructing the answer. Show
the following:

(a) If the time r-complexity of q is bounded by f , then there exists k, k > 0, such that
the time a-complexity of q is bounded by nkf , where n is the number of constants
in the input instance.

(b) If the space r-complexity of q is bounded by f , then there exists k, k > 0, such that
the space a-complexity of q is bounded by nk+ f , where n is the number of constants
in the input instance.

(c) If the time a-complexity of q is bounded by f , then there exists k, k > 0, such that
the time r-complexity of q is bounded by kf .

(d) If the space a-complexity of q is bounded by f , then the space r-complexity of q is
bounded by f .

Exercise 16.14 (Data complexity of algebra) Determine the time and space complexity of
each of the relational algebra operations (show the lowest complexity you can).

.Exercise 16.15

(a) Develop an algorithm for computing the transitive closure of a graph that uses only
the information provided by the graph (i.e., a generic algorithm).

(b) Develop algorithms for a TM to compute the transitive closure of a graph (starting
from a standard encoding of the graph on the tape) that use as little time (space) as
you can manage.

(c) Write a datalog program defining the transitive closure of a graph so that the number
of stages in the bottom-up evaluation is as small as you can manage.
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and While

Alice: I get it, now we’ll match languages to complexity classes.
Sergio: It’s not that easy—data independence adds some spice.

Riccardo: You can think of it as not having order.
Vittorio: It’s a lot of fun, and we’ll play some games along the way.

In Chapter 16, we laid the framework for studying the expressiveness and complexity
of query languages. In this chapter, we evaluate three of the most important classes of

languages discussed so far—CALC, fixpoint, and while—with respect to expressiveness
and complexity. We show that CALC is in logspace and ac0, that fixpoint is complete in
ptime, and that while is complete in pspace.1 We also investigate the impact of the presence
of an ordering of the constants in the input.

We first show that CALC can be evaluated in logspace. This complexity result partly
explains the success of relational database systems: Relational queries can be evaluated
efficiently. Furthermore, it implies that these queries are within nc and thus that they have a
high potential of intrinsic parallelism (not yet fully exploited in actual systems). We prove
that CALC queries can be evaluated in constant time in a particular (standard) model of
parallel computation based on circuits.

While looking at the expressive power of CALC and the other two languages, we
study their limitations by examining queries that cannot be expressed in these languages.
This leads us to introduce important tools that are useful in investigating the expressive
power of query languages. We first present an elegant characterization of CALC based on
Ehrenfeucht-Fraissé games. This is used to show limitations in the expressive power of
CALC, such as the nonexpressibility of the transitive closure query on a graph. A second
tool related to expressiveness, which applies to all languages discussed in this chapter,
consists of proving 0-1 laws for languages. This powerful approach, based on probabilities,
allows us to show that certain queries (such as even) are not expressible in while and thus
not in fixpoint or CALC.

As discussed in Section 16.3, there are simple queries that these languages cannot ex-
press (e.g., the prototypical example of even). Together with the completeness of fixpoint
and while in ptime and pspace, respectively, this suggests that there is an uneasy relation-
ship between these languages and complexity classes. As intimated in Section 16.3, the
problem can be attributed to the fact that a generic query language cannot take advantage
of the information provided by the internal representation of data used by Turing machines,

1 ac0 and nc are two parallel complexity classes defined later in this chapter.
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such as an ordering of the constants. For instance, the query even is easily expressible in
while if an order is provided.

A fundamental result of this chapter is that fixpoint expresses exactly qptime under
the assumption that queries can access an order on the constants. It is especially surprising
that a complexity class based on such a natural resource as time coincides with a logic-
based language such as fixpoint. However, this characterization depends on the order in
a crucial manner, and this highlights the importance of order in the context of generic
computation. No language is known that expresses qptime without the order assumption;
and the existence of such a language remains one of the main open problems in the theory
of query languages.

This chapter concludes with two recent developments that shed further light on the
interplay of order and expressiveness. The first shows that a while query on an unordered
database can be reduced to a while query on an ordered database via a fixpoint query. The
fixpoint query produces an ordered database from a given unordered one by grouping tuples
into a sequence of blocks that are never split in the computation of the while query; the
blocks can then be thought of as elements of an ordered database. This also allows us to
clarify the connection between fixpoint and while: They are distinct, unless ptime = pspace.

The second recent development considers nondeterminism as a means for overcoming
limitations due to the absence of ordering of the domain. Several nondeterministic exten-
sions of CALC, fixpoint, and while are shown.

The impact of order is a constant theme throughout the discussion of expressive power.
As discussed in Chapter 16, the need to consider computation without order is a conse-
quence of the data independence principle, which is considered important in the database
perspective. Therefore computation with order is viewed as a metaphor for an (at least
partial) abandonment of the data independence principle.

17.1 Complexity of First-Order Queries

This section considers the complexity of first-order queries and shows that they are in
qlogspace. This result is particularly significant given its implications about the parallel
complexity of CALC and thus of relational languages in general. Indeed, logspace ⊆ nc.
As will be seen, this means that every CALC query can be evaluated in polylogarithmic
time using a polynomial number of processors. Moreover, as described in this section, a
direct proof shows the stronger result that the first-order queries can in fact be evaluated in
ac0. Intuitively, this says that first-order queries can be evaluated in constant time with a
polynomial number of processors.

We begin by showing the connection between CALC and qlogspace.

Theorem 17.1.1 CALC is included in qlogspace.

Proof Let ϕ be a query in CALC over some database schema R. We will describe a TM
Mϕ, depending on ϕ, that solves the recognition problem for ϕ and uses a work tape with
length logarithmic in the size of the read-only input tape.

Suppose that Mϕ is started with input encα(I)#encα(u) for some instance I over R,
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some enumeration α of the constants, and some tuple u over adom(I) whose arity is the
same as that of the result of ϕ. Mϕ should accept the input iff u ∈ ϕ(I). We assume w.l.o.g.
that ϕ is in prenex normal form. We show by induction on the number of quantifiers of ϕ
that the computation can be performed using k · log(|encα(I)#encα(u)|) cells of the work
tape, for some constant k.

Basis. If ϕ has no quantifiers, then all the variables of ϕ are free. Let ν be the valuation
mapping the free variables of ϕ to u. Mϕ must determine whether I |= ϕ[ν]. To determine
the truth value of each literal L under ν occurring in ϕ, one needs only scan the input
tape looking for ν(L). This can be accomplished by considering each tuple of I in turn,
comparing it with relevant portions of u. For each such tuple, the address of the beginning
of the tuple should be stored on the tape along with the offset to the current location of the
tuple being scanned. This can be accomplished within logarithmic space.

Induction. Now suppose that each prenex normal form CALC formula with less than
n quantifiers can be evaluated in logspace, and let ϕ be a prenex normal form formula
with n quantifiers. Suppose ϕ is of the form ∃x ψ . (The case when ϕ is of the form ∀x ψ
is similar.)

All possible values of x are tried. If some value is found that makes ψ true, then
the input is accepted; otherwise it is rejected. The values used for x are all those that
appear on the input tape in the order in which they appear. To keep track of the current
value of x, one needs log(nc) work tape cells, where nc is the number of constants in I.
Because nc is less than the length of the input, the number of cells needed is no more than
log(|encα(I)#encα(u)|). The problem is now reduced to evaluating ψ for each value of x.
By the induction hypothesis, this can be done using k · log(|encα(I)#encα(u)|) work tape
cells for some k. Thus the entire computation takes (k + 1) log(|encα(I)#encα(u)|) work
tape cells; which concludes the induction.

Unfortunately, CALC does not express all of qlogspace. It will be shown in Sec-
tion 17.3 that even, although clearly in qlogspace, is not a first-order query.

We next consider informally the parallel complexity of CALC. We are concerned with
two parallel complexity classes: nc and ac0. Intuitively, nc is the class of problems that
can be solved using polynomially many processors in time polynomial in the logarithm of
the input size; ac0 also allows polynomially many processors but only constant time. The
formal definitions of nc and ac0 are based on a circuit model in which time corresponds to
the depth of the circuit and the number of gates corresponds to its size. The circuits use and,
or, and not gates and have unbounded fan-in.2 Thus ac0 is the class of problems definable
using circuits where the depth is constant and the size polynomial in the input.

The fact that the complexity of CALC is logspace implies that its parallel complexity
is nc, because it is well known that logspace ⊆ nc. However, one can prove a tighter
result, which says that the parallel complexity of CALC is in fact ac0. So only constant
time is needed to evaluate CALC queries. More than any other known complexity result on
CALC, this captures the fundamental intuition that first-order queries can be evaluated in

2 The fan-in is the number of wires going into a gate.
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parallel very efficiently and that they represent, in some sense, primitive manipulations of
relations.

We sketch only the proof and leave the details for Exercise 17.2.

Theorem 17.1.2 Every CALC query is in ac0.

Crux Let us first provide an intuition of the result independent of the circuit model. We
will use the relational algebra. We will argue that each of the operations π, σ,×,−,∪ can
be performed in constant parallel time using only polynomially many processors.

Let e be an expression in the algebra over some database schema R. Consider the
following infinite space of processors. There is one processor for each pair 〈f, u〉, where f
is a subexpression of e and u is a tuple of the same arity as the result of f , using constants
from dom. Let us denote one such processor by pf,u. Note that, in particular, for each
relation nameQ occurring in f and each u of the arity ofQ, pQ,u is one of the processors.
Each processor has two possible states, true or false, indicating whether u is in the result
of f .

At the beginning, all processors are in state false. An input instance is specified by
turning on the processors corresponding to tuples in the input relations (i.e., processors
pR,u if u is in input relation R). The result consists of the tuples u for which pe,u is in
state true at the end of the computation. For a given input, we are only concerned with the
processors formed from tuples with constants occurring in the input. Clearly, no more than
polynomially many processors will be relevant during the computation.

It remains to show that each algebra operation takes constant time. Consider, for
instance, cross product. Suppose f × g is a subexpression of e. To compute f × g, the
processors pf,u and pg,v send the message true to processor p(f×g),uv if their state is
true. Processor p(f×g),uv goes to state true when receiving two true messages. The other
operations are similar. Thus e is evaluated in constant time in our informal model of parallel
computation.

To formalize the foregoing intuition using the circuit model, one must construct,
for each n, a circuit Bn that, for each input of length n consisting of an encoding over
the alphabet {0, 1} of an instance I and a tuple u, outputs 1 iff u ∈ e(I). The idea for
constructing the circuit is similar to the informal construction in the previous paragraph
except that processors are replaced by wires (edges in the graph representing the circuit)
that carry either the value 1 or 0. Moreover, each Bn has polynomial size. Thus only wires
that can become active for some input are included. Figure 17.1 represents fragments of
circuits computing some relational operations. In the figure, f is the cross product of g
and h (i.e., g × h); f ′ is the difference g − h; and f ′′ is the projection of h on the first
coordinate. Observe that projection is the most tricky operation. In the figure, it is assumed
that the active domain consists of four constants. Note also that because of projection, the
circuits have unbounded fan-in.

We leave the details of the construction of the circuits Bn to the reader (see Exer-
cise 17.2). In particular, note that one must use a slightly more cumbersome encoding than
that used for Turing machines because the alphabet is now restricted to {0, 1}.
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[f ′, [b, c]][f, [a, b, a, b]] [f ′′, [a]]

and and or

not

[g, [a, b]] [h, [a, b]] [g, [b, c]] [h, [b, c]] [h, [a, a]] [h, [a, d]][h, [a, c]][h, [a, b]]

Figure 17.1: Some fragments of circuits

One might naturally wonder if CALC expresses all queries in ac0. It turns out that
there are queries in ac0 that are not first order. This is demonstrated in Section 17.4.

17.2 Expressiveness of First-Order Queries

We have seen that first-order queries have desirable properties with respect to complexity.
However, there is a price to pay for this in terms of expressiveness: There are many useful
queries that are not first order. Typical examples of such queries are even and transitive
closure of a graph. This section presents an elegant technique based on a two-player game
that can be used to prove that certain queries (including even and transitive closure) are
not first order. Although the game we describe is geared toward first-order queries, games
provide a general technique that is used in conjunction with many other languages.

The connection between CALC sentences and games is, intuitively, the following.
Consider as an example a CALC sentence of the form

∀x1 ∃x2 ∀x3 ψ(x1, x2, x3).

One can view the sentence as a statement about a game with two players, 1 and 2, who
alternate in picking values for x1, x2, x3. The sentence says that Player 2 can always force
a choice of values that makes ψ(x1, x2, x3) true. In other words, no matter which value
Player 1 chooses for x1, Player 2 can pick an x2 such that, no matter which x3 is chosen
next by Player 1, ψ(x1, x2, x3) is true.

The actual game we use, called the Ehrenfeucht-Fraissé game, is slightly more in-
volved, but is based on a similar intuition. It is played on two instances. Suppose that R is
a database schema. Let I and J be instances over R, with disjoint sets of constants. Let r be
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∧

∃z∃y

P(x, z)R(x, y)

∀x

Figure 17.2: A syntax tree

a positive integer. The game of length r associated with I and J is played by two players
called Spoiler and Duplicator, making r choices each. Spoiler starts by picking a constant
occurring in I or J, and Duplicator picks a constant in the opposite instance. This is re-
peated r times. At each move, Spoiler has the choice of the instance and a constant in it,
and Duplicator must respond in the opposite instance.

Let ai be the ith constant picked in I (respectively, bi in J). The set of pairs {(a1, b1),

. . . , (ar, br)} is a round of the game. The subinstance of I generated by {a1, . . . , ar},
denoted I/{a1, . . . , ar}, consists of all facts in I using only these constants, and similarly
for J, {b1, . . . , br} and J/{b1, . . . , br}.

Duplicator wins the round {(a1, b1), . . . , (ar, br)} iff the mapping ai→ bi is an iso-
morphism of the subinstances I/{a1, . . . , ar} and J/{b1, . . . , br}.

Duplicator wins the game of length r associated with I and J if he or she has a winning
strategy (i.e., Duplicator can always win any game of length r on I and J, no matter
how Spoiler plays). This is denoted by I ≡r J. Note that the relation ≡r is an equivalence
relation on instances over R (see Exercise 17.3).

Intuitively, the equivalence I≡r J says that I and J cannot be distinguished by looking
at just r constants at a time in the two instances. Recall that the quantifier depth of a CALC
formula is the maximum number of quantifiers in a path from the root to a leaf in the
representation of the sentence as a tree. The main result of Ehrenfeucht-Fraissé games is
that the ability to distinguish among instances using games of length r is equivalent to the
ability to distinguish among instances using some CALC sentence of quantifier depth r .

Example 17.2.1 Consider the sentence ∀x (∃y R(x, y) ∧ ∃z P (x, z)). Its syntax tree is
represented in Fig. 17.2. The sentence has quantifier depth 2. Note that, for a sentence in
prenex normal form, the quantifier depth is simply the number of quantifiers in the formula.

The main result of Ehrenfeucht-Fraissé games, stated in Theorem 17.2.2, is that if I
and J are two instances such that Duplicator has a winning strategy for the game of length
r on the two instances, then I and J cannot be distinguished by any CALC sentence of
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quantifier depth r . Before proving this theorem, we note that the converse of that result
also holds. Thus if two instances are undistinguishable using sentences of quantifier depth
r , then they are equivalent with respect to ≡r . Although interesting, this is of less use as a
tool for proving expressibility results, and we leave it as a (nontrivial!) exercise. The main
idea is to show that each equivalence class of ≡r is definable by a sentence of quantifier
depth r (see Exercises 17.9 and 17.10).

Theorem 17.2.2 Let I and J be two instances over a database schema R. If I≡r J, then
for each CALC sentence ϕ over R with quantifier depth r , I and J both satisfy ϕ or neither
does.

Crux Suppose that I |= ϕ and J �|= ϕ for some ϕ of quantifier depth r . We prove that
I �≡r J. We provide only a sketch of the proof in an example.

Let ϕ be the sentence ∀x1 ∃x2 ∀x3 ψ(x1, x2, x3), where ψ has no quantifiers, and let I
and J be two instances such that I |= ϕ, J �|= ϕ. Then

I |= ∀x1 ∃x2 ∀x3 ψ(x1, x2, x3) and J |= ∃x1 ∀x2 ∃x3 ¬ψ(x1, x2, x3).

We will show that Spoiler can prevent Duplicator from winning by forcing the choice
of constants a1, a2, a3 in I and b1, b2, b3 in J such that I |= ψ(a1, a2, a3) and J |=
¬ψ(b1, b2, b3). Then the mapping ai→ bi cannot be an isomorphism of the subinstances
I/{a1, a2, a3} and J/{b1, b2, b3}, contradicting the assumption that Duplicator has a win-
ning strategy. To force this choice, Spoiler always picks “witnesses” corresponding to the
existential quantifiers in ϕ and ¬ϕ (note that the quantifier for each variable is either ∀ in
ϕ and ∃ in ¬ϕ, or vice versa).

Spoiler starts by picking a constant b1 in J such that

J |= ∀x2 ∃x3 ¬ψ(b1, x2, x3).

Duplicator must respond by picking a constant a1 in I. Due to the universal quantification
in ϕ,

I |= ∃x2 ∀x3 ψ(a1, x2, x3),

regardless of which a1 was picked. Next Spoiler picks a constant a2 in I such that

I |= ∀x3 ψ(a1, a2, x3).

Regardless of which constant b2 in J Duplicator picks,

J |= ∃x3 ¬ψ(b1, b2, x3).

Finally Spoiler picks b3 in J such that J |= ¬ψ(b1, b2, b3); Duplicator picks some a3 in I,
and I |= ψ(a1, a2, a3).
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B
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B2

a1 a3

a2

b3b1
b2

Figure 17.3: Two undistinguishable graphs

Theorem 17.2.2 provides an important tool for proving that certain properties are not
definable by CALC. It is sufficient to exhibit, for each r , two instances Ir and Jr such that
Ir has the property, Jr does not, and Ir ≡r Jr . In the next proposition, we illustrate the use
of this technique by showing that graph connectivity, and therefore transitive closure, is
not expressible in CALC.

Proposition 17.2.3 Let R be a database schema consisting of one binary relation. Then
the query conn defined by

conn(I)= true iff I is a connected graph

is not expressible in CALC.

Crux Suppose that there is a CALC sentence ϕ checking graph connectivity. Let r be
the quantifier depth of ϕ. We exhibit a connected graph Ir and a disconnected graph Jr
such that Ir ≡r Jr . Then, by Theorem 17.2.2, the two instances satisfy ϕ or none does, a
contradiction.

For a sufficiently large n (depending only on r; see Exercise 17.5), the graph Ir consists
of a cycle B of 2n nodes and the graph Jr of two disjoint cycles B1 and B2 of n nodes each
(see Fig. 17.3). We outline the winning strategy for Duplicator. The main idea is simple:
Two nodes a, a′ in Ir that are far apart behave in the same way as two nodes b, b′ in Jr that
belong to different cycles. In particular, Spoiler cannot take advantage of the fact that a, a′
are connected but b, b′ are not. To do so, Spoiler would have to exhibit a path connecting a
to a′, which Duplicator could not do for b and b′. However, Spoiler cannot construct such
a path because it requires choosing more than r nodes.

For example, if Spoiler picks an element a1 in Ir , then Duplicator picks an arbitrary
element b1, say in B1. Now if Spoiler picks an element b2 in B2, then Duplicator picks an
element a2 in Ir far from a1. Next, if Spoiler picks a b3 in B1 close to b1, then Duplicator
picks an element a3 in Ir close to a1. The graphs are sufficiently large that this can proceed
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for r moves with the resulting subgraphs isomorphic. The full proof requires a complete
case analysis on the moves that Spoiler can make.

The preceding technique can be used to show that many other properties are not
expressible in CALC—for instance, even, 2-colorability of graphs, or Eulerian graphs
(i.e., graphs for which there is a cycle that passes through each edge exactly once) (see
Exercise 17.7).

17.3 Fixpoint and While Queries

That transitive closure is not expressible in CALC has been the driving force behind ex-
tending relational calculus and algebra with recursion. In this section we discuss the ex-
pressiveness and complexity of the two main extensions of these languages with recursion:
the fixpoint and while queries.

It is relatively easy to place an upper bound on the complexity of fixpoint and while
queries. Recall that the main distinction between languages defining fixpoint queries and
those defining while queries is that the first are inflationary and the second are not (see
Chapter 14). It follows that fixpoint queries can be implemented in polynomial time and
while queries in polynomial space. Moreover, these bounds are tight, as shown next.

Theorem 17.3.1

(a) The fixpoint queries are complete in ptime.

(b) The while queries are complete in pspace.

Crux The fact that each fixpoint query is in ptime follows immediately from the infla-
tionary nature of languages defining the fixpoint queries and the fact that the total number
of tuples that can be built from constants in a given instance is polynomial in the size of
the instance (see Chapter 14). For while, inclusion in pspace follows similarly (see Ex-
ercise 17.11). The completeness follows from an important result that will be shown in
Section 17.4. The result, Theorem 17.4.2, states that if an order on the constants of the do-
main is available, fixpoint expresses exactly qptime and while expresses exactly qpspace.
The completeness then follows from the fact that there exist problems that are complete in
ptime and problems that are complete in pspace (see Exercise 17.11).

The Parity Query

As was the case for the first-order queries, fixpoint and while do not match precisely with
complexity classes of queries. Although they are powerful, neither fixpoint nor while can
express certain simple queries. The typical example is the parity query even on a unary
relation. We next provide a direct proof that while (and therefore fixpoint) cannot express
even. The result also follows using 0-1 laws, which are presented later. We present the
direct proof here to illustrate the proof technique of hyperplanes.
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Proposition 17.3.2 The query even is not a while query.

Proof Let R be a unary relation. Suppose that there exists a while program w that
computes the query even on input R. We can assume, w.l.o.g., that R contains a unary
relation ans so that, on input I, w(I)(ans)= ∅ if |I| is even, and w(I)= I otherwise. Let R
be the schema of w (so R contains R and ans). We will reach a contradiction by showing
that the computation of w on a given input is essentially independent of its size. More
precisely, for n large enough, the computations of w on all inputs of size greater than n
will in some sense be identical. This contradicts the fact that ans should be empty at the
end of some computations but not others.

To show this, we need a short digression related to computations on unary relations.
We assume here that w does not use constants, but the construction can be generalized to
that case (see Exercise 17.14). Let I be an input instance and k an integer. We consider a
partition of the set of k-tuples with entries in adom(I) into hyperplanes based on patterns of
equalities and inequalities between components as follows. For each equivalence relation
' over {1, . . . , k}, the corresponding hyperplane is defined by3

H'(I)= {〈u1, . . . , uk〉 | for each i, j ∈ [1, k],

ui, uj ∈ adom(I) and ui = uj ⇔ i ' j}.

For instance, let adom(I)= {a, b, c}, k = 3 and

'= {〈1, 1〉, 〈2, 2〉, 〈1, 2〉, 〈2, 1〉, 〈3, 3〉}.

Then

H'(I)= {〈a, a, b〉, 〈a, a, c〉, 〈b, b, a〉, 〈b, b, c〉, 〈c, c, a〉, 〈c, c, b〉}.

Finally there are two 0-ary hyperplanes, denoted true and false, that evaluate to {〈〉} and {},
respectively.

We will see that a while computation cannot distinguish between two k-tuples in the
same hyperplane, and so intermediate relations of arity k will always consist of a union of
hyperplanes.

Now consider the while programw. We assume that the condition guarding each while
loop has the form R �= ∅ for some R ∈ R, and that in each assignment R := E, E involves
a single application of some unary or binary algebra operator. We label the statements of
the program so we can talk about the program state (i.e., the label) after some number of
computation steps on input I. We include two labels in a while statement in the following
manner:

label1 while 〈condition〉 do label2 〈statement〉.

3 Note that, in logic terminology, ' corresponds to the notion of equality type, and hyperplanes
correspond to realizations of equality types.
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LetN be the maximum arity of any relation in R. To conclude the proof, we will show
by induction on the steps of the computation that there is a number bw such that for each
input I with size ≥N , w terminates on I after exactly bw steps. Furthermore,

(*) for each step m ≤ bw, there exists a label jm and for each relation T of arity k a set
ET,m of equivalence relations over {1, . . . , k} such that for each input I of size greater
than N

1. the control is at label jm after m steps of the computation; and
2. each T then contains ∪{H'(I) | ' in ET,m}.

To see that this yields the result, suppose that it is true. Then for each I with size ≥ N , w
terminates with ans always empty or always nonempty, regardless of whether the size of I
is even or odd (a contradiction).

The claim follows from an inductive proof of (*). It is clear that this holds at the
0th step. At the start of the computation, all T are empty except for the input unary
relation R, which contains all constants and so consists of the hyperplane H', where
'= {〈1, 1〉}. Suppose now that (*) holds for each step less than m and that the program
has not terminated on any I with size ≥ N . We prove that (*) also holds for m. There are
two cases to consider:

• Label jm−1 occurs before the keyword while. By induction, the relation controlling
the loop is empty after the (m− 1)st step, for all inputs large enough, or nonempty for
all such inputs. Thus at step m, the control will be at the same label for all instances
large enough, so (*1) holds. No relations have been modified, so (*2) also holds.

• Otherwise jm−1 labels an assignment statement. Then after the (m− 1)st step, the
control will clearly be at the label of the next statement for all instances large enough,
so (*1) holds. With regard to (*2), we consider the case where the assignment is
T :=Q1 ×Q2 for some variables T , Q1, and Q2; the other relation operators are
handled in a similar fashion (see Exercise 17.12). By induction, (*2) holds for all
relations distinct from T because they are not modified. Consider T . After step m,
T contains

⋃
{H'1(I) | '1 in EQ1,m−1} ×

⋃
{H'2(I) | '2 in EQ2,m−1} =⋃

{H'1(I)×H'2(I) | '1 in EQ1,m−1,'2 in EQ2,m−1}.

Let k, l be the arities of Q1,Q2, respectively, and for each '2 in EQ2,m−1, let

'+k2 = {(x + k, y + k) | (x, y) ∈ '2}.

For an arbitrary binary relation γ ⊆ [1, k+ l]× [1, k+ l], let γ ∗ denote the reflexive,
symmetric, and transitive closure of γ . For '1,'2 in EQ1,m−1, EQ2,m−1, respec-
tively, set
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'1 ⊗'2 = {('1 ∪ '+k2 ∪A)∗ |A⊆ [1, k]× [k + 1, k + l],
and for all i, i′, j, j ′ such that [i, j ] ∈A
and [i′, j ′] ∈A, i '1 i

′ iff j '+k2 j ′}.

It is straightforward to verify that for each pair'1,'2 inEQ1,m−1, EQ2,m−1, respec-
tively, and I with size ≥N ,

H'1(I)×H'2(I)=H'1⊗'2(I).

Note that this uses the assumption that the size of I is greater than N , the maximum
arity of relations in w. It follows that

ET,m =
⋃
{'1 ⊗'2 | '1 in EQ1,m−1 and '2 in EQ2,m−1}.

Thus (*2) also holds for T at step m, and the induction is completed.

The hyperplane technique used in the preceding proof is based on the fact that in the
context of a (sufficiently large) unary relation input, there are families of tuples (in this
case the different hyperplanes) that “travel together” and hence that the intermediate and
final results are unions of these families of tuples. Although there are other cases in which
the technique of hyperplanes can be applied (see Exercise 17.15), in the general case the
input is not a union of hyperplanes, and so the members of a hyperplane do not travel
together. However, there is a generalization of hyperplanes based on automorphisms that
yields the same effect. Recall that an automorphism of I is a one-to-one mapping ρ on
adom(I) such that ρ(I)= I. For fixed I, consider the following equivalence relation ≡I

k on
k-tuples of adom(I): u ≡I

k v iff there exists an automorphism ρ of I such that ρ(u)= v.
(See Exercises 16.6 and 16.7 in the previous chapter.) It can be shown that if w is a while
query (without constants), then the members of equivalence classes ≡I

k travel together
when w is executed on input I. More precisely, suppose that J is an instance obtained at
some point in the computation of w on input I. The genericity of while programs implies
that if ρ is an automorphism of I, it is also an automorphism of J. Thus for each k-tuple u in
some relation of J and each v such that u ≡I

k v, v also belongs to that relation. Thus each
relation in J of arity k is a union of equivalence classes of ≡I

k. The equivalence relation ≡I
k

will be used in our development of 0-1 laws, presented next.

0-1 Laws

We now develop a powerful tool that provides a uniform approach to resolving in the
negative a large spectrum of expressibility problems. It is based on the probability that a
property is true in instances of a given size. We shall prove a surprising fact: All properties
expressible by a while query are “almost surely” true, or “almost surely” false. More
precisely, we prove the result for while sentences:
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Definition 17.3.3 A sentence is a total query that is Boolean (i.e., returns as answer
either true or false).

Let q be a sentence over some schema R. For each n, let µn(q) denote the fraction of
instances over R with entries in {1, . . . , n} that satisfy q. That is,

µn(q)= |{I | q(I)= true and adom(I)= {1, . . . , n}}|
|{I | adom(I)= {1, . . . , n}}| .

Definition 17.3.4 A sentence q is almost surely true (false) if limn→∞µn(q) exists and
equals 1 (0). If every sentence in a language L is almost surely true or almost surely false,
the language L has a 0-1 law.

To simplify the discussion of 0-1 laws, we continue to focus exclusively on constant-
free queries (see Exercise 17.19).

We will show that CALC, fixpoint, and while sentences have 0-1 laws. This provides
substantial insight into limitations of the expressive power of these languages and can
be used to show that they cannot express a variety of properties. For example, it follows
immediately that even is not expressible in either of these languages. Indeed, µn(even) is 1
if n is even and 0 if n is odd. Thus µn(even) does not converge, so even is not expressible
in a language that has a 0-1 law.

While 0-1 laws provide an elegant and powerful tool, they require the development
of some nontrivial machinery. Interestingly, this is one of the rare occasions when we will
need to consider infinite instances even though we aim to prove something about finite
instances only.

We start by proving that CALC has a 0-1 law and then extend the result to fixpoint
and while. For simplicity, we consider only the case when the input to the query is a binary
relation G (representing edges in a directed graph with no edges of the form 〈a, a〉). It is
straightforward to generalize the development to arbitrary inputs (see Exercise 17.19).

We will use an infinite set A of CALC sentences called extension axioms, which refer
to graphs. They say, intuitively, that every subgraph can be extended by one node in all
possible ways. More precisely, A contains, for each k, all sentences of the form

∀x1 . . .∀xk((
∧
i �=j
(xi �= xj))⇒∃y(

∧
i

(xi �= y) ∧ connections(x1, . . . , xk; y))),

where connections(x1, . . . , xk; y) is some conjunction of literals containing, for each xi,
one of G(xi, y) or ¬G(xi, y), and one of G(y, xi) or ¬G(y, xi). For example, for k = 3,
one of the 26 extension axioms is

∀x1, x2, x3 ((x1 �= x2 ∧ x2 �= x3 ∧ x3 �= x1)⇒
∃y (x1 �= y ∧ x2 �= y ∧ x3 �= y ∧
G(x1, y) ∧ ¬G(y, x1) ∧ ¬G(x2, y) ∧ ¬G(y, x2) ∧G(x3, y) ∧G(y, x3)))

specifying the pattern of connections represented in Fig. 17.4.
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x1 x2 x3

y

Figure 17.4: A connection pattern

A graph G satisfies this particular extension axiom if for each triple x1, x2, x3 of
distinct vertexes inG, there exists a vertex y connected to x1, x2, x3, as shown in Fig. 17.4.

Note that A consists of an infinite set of sentences and that each finite subset of A is
satisfied by some infinite instance. (The instance is obtained by starting from one node and
repeatedly adding nodes required by the extension axioms in the subset.) Then by the com-
pactness theorem there is an infinite instance satisfying all of A, and by the Löwenheim-
Skolem theorem (see Chapter 2) there is a countably infinite instanceR satisfying A.

The following lemma shows thatR is unique up to isomorphism.

Lemma 17.3.5 If R and P are two countably infinite instances over G satisfying all
sentences in A, thenR and P are isomorphic.

Proof Suppose that a1a2 . . . is an enumeration of all constants in R, and b1b2 . . . is an
enumeration of those in P . We construct an isomorphism between R and P by alternat-
ingly picking constants from R and from P . We construct sequences ai1 . . . aik . . . and
bi1 . . . bik . . . such that aik → bik is an isomorphism from R to P . The procedure for pick-
ing the kth constants aik and bik in these sequences is defined inductively as follows. For the
base case, let ai1 = a1 and bi1 = b1. Suppose that sequences ai1 . . . aik and bi1 . . . bik have
been defined. If k is even, let aik+1 be the first constant in a1, a2, . . . that does not occur so
far in the sequence. Let σk be the sentence in A describing the way aik+1 extends the sub-
graph with nodes ai1 . . . aik. Because P also satisfies σk, there exists a constant b in P that
extends the subgraph bi1 . . . bik in the same manner. Let bik+1 = b. If k is odd, the procedure
is reversed (i.e., it starts by choosing first a new constant from b1, b2, . . .). This back-and-
forth procedure ensures that (1) all constants from both R and P occur eventually among
the chosen constants, and (2) the mapping aik → bik is an isomorphism.

Thus the foregoing proof shows that there exists a unique (up to isomorphism) count-
able graph R satisfying A. This graph, studied extensively by Rado [Rad64] and others,
is usually referred to as the Rado graph. We can now prove the following crucial lemma.
The key point is the equivalence between (a) and (c), called the transfer property: It relates
satisfaction of a sentence by the Rado graph to the property of being almost surely true.

Lemma 17.3.6 Let R be the Rado graph and σ a CALC sentence. The following are
equivalent:

(a) R satisfies σ ;
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(b) A implies σ ; and

(c) σ is almost surely true.

Proof (a)⇒ (b): Suppose (a) holds but (b) does not. Then there exists some instance P
satisfying A but not σ . Because P satisfies A, P must be infinite. By the Lowënheim-
Skolem theorem (see Chapter 2), we can assume that P is countable. But then, by
Lemma 17.3.5, P is isomorphic to R. This is a contradiction, because R satisfies σ but P
does not.

(b)⇒ (c): It is sufficient to show that each sentence in A is almost surely true.
Suppose this is the case and A implies σ . By the compactness theorem, σ is implied
by some finite subset A′ of A. Because every sentence in A′ is almost surely true, the
conjunction

∧
A′ of these sentences is almost surely true. Because σ is true in every

instance where
∧
A′ is true, µn(σ)≥ µn(

∧
A′), so µn(σ) converges to 1 and σ is almost

surely true.
It remains to show that each sentence inA is almost surely true. Consider the following

sentence σk in A:

∀x1 . . .∀xk((
∧
i �=j
(xi �= xj))→∃y(

∧
i

(xi �= y) ∧ connections(x1, . . . , xk; y))).

Then ¬σk is the sentence

∃x1 . . . ∃xk((
∧
i �=j
(xi �= xj)) ∧

∀y(
∧
i

(xi �= y)→¬connections(x1, . . . , xk; y))).

We will show the following property on the probability that an instance with n constants
does not satisfy σk:

(**) µn(¬σk)≤ n · (n− 1) · . . . · (n− k) · (1− 1

22k
)(n−k).

Because limn→∞[n · (n− 1) · . . . · (n− k) · (1− 1
22k )

(n−k)]= 0, it follows that limn→∞µn
(¬σk)= 0, so ¬σk is almost surely false, and σk is almost surely true.

Let N be the number of instances with constants in {1, . . . , n}. To prove (**), observe
the following:

1. For some fixed distinct a1, . . . , ak, b in {1, . . . , n}, the number of I satisfying some
fixed literal in connections(a1, . . . , ak; b) is 1

2 ·N .

2. For some fixed distinct a1, . . . , ak, b in {1, . . . , n}, the number of I satisfying
connections(a1, . . . , ak; b) is 1

22k ·N (because there are 2k literals in connections).

3. The number of I not satisfying connections(a1, . . . , ak; b) is therefore
N − 1

22k ·N = (1− 1
22k ) ·N .
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4. For some fixed a1, . . . , ak in {1, . . . , n}, the number of I satisfying

∀y(
∧
i

(ai �= y)→¬connections(a1, . . . , ak; y))

is (1 − 1
22k )

n−k · N [because there are (n − k) ways of picking b distinct from
a1, . . . , ak)].

5. The number of I satisfying ¬σk is thus at most

n · (n− 1) · . . . · (n− k) · (1− 1

22k
)(n−k) ·N

(from the choices of a1, . . . , ak). Hence (**) is proven.

(See Exercise 17.16.)
(c)⇒ (a): Suppose thatR does not satisfy σ (i.e.,R |= ¬σ ). Because (a)⇒ (c), ¬σ

is almost surely true. Then σ cannot be almost surely true (a contradiction).

The 0-1 law for CALC follows immediately.

Theorem 17.3.7 Each sentence in CALC is almost surely true or almost surely false.

Proof Let σ be a CALC sentence. The Rado graph R satisfies either σ or ¬σ . By the
transfer property [(a)⇒ (c) in Lemma 17.3.6], σ is almost surely true or ¬σ is almost
surely true. Thus σ is almost surely true or almost surely false.

The 0-1 law for CALC can be extended to fixpoint and while. We prove it next for
while (and therefore fixpoint). Once again the proof uses the Rado graph and extends the
transfer property to the while sentences.

Theorem 17.3.8 Every while sentence is almost surely true or almost surely false.

Proof We use as a language for the while queries the partial fixpoint logic CALC+µ.
The main idea of the proof is to show that every CALC+µ sentence that is defined on all
instances is in fact equivalent almost surely to a CALC sentence, and so by the previous
result is almost surely true or almost surely false. We show this for CALC+µ sentences.
By Theorem 14.4.7, we can consider w.l.o.g. only sentences involving one application of
the partial fixpoint operator µ. Thus consider a CALC+µ sentence ξ of the form

ξ = ∃,x (µT (ϕ(T ))(,t))

over schema R, where

(a) ϕ is a CALC formula, and

(b) ,t is a tuple of variables or constants of appropriate arity, and ,x is the tuple of
distinct free variables in ,t .
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(We need the existential quantification for binding the free variables. An alternative is to
have constants in ,t but, as mentioned earlier we do not consider constants when discussing
0-1 laws.)

Essentially, a computation of a query ξ consists of iterating the CALC formula ϕ until
convergence occurs (if ever). Consider the sequence {ϕi(I)}i>0, where I is an input. If I
is finite, the sequence is periodic [i.e., there exist N and p such that, for each n ≥ N ,
ϕn(I) = ϕn+p(I)]. If p = 1, then the sequence converges (it becomes constant at some
point); otherwise it does not. Now consider the sequence {ϕi(R)}i>0, whereR is the Rado
graph. Because the set of constants involved is no longer finite, the sequence may or may
not be periodic. A key point in our proof is the observation that the sequence {ϕi(R)}i>0 is
indeed periodic, just as in the finite case.

To see this, we use a technique similar to the hyperplane technique in the proof of
Lemma 17.3.5. Let k be some integer. We argue next that for each k, there is a finite number
of equivalence classes of k-tuples induced by automorphisms ofR. For each pair u, v of k-
tuples with entries in adom(R), let u ≡Rk v iff there exists an automorphism ρ ofR such
that ρ(u)= v.

Let u'Rk v if both the patterns of equality and the patterns of connection within u and
v are identical. More formally, for each u= 〈a1, . . . , ak〉, v = 〈b1, . . . , bk〉 (where ai and
bi are constants inR), u'Rk v if

• for each i, j , ai = aj iff bi = bj , and

• for each i, j , 〈ai, aj〉 is an edge inR iff 〈bi, bj〉 is an edge inR.

We claim that

u ≡Rk v iff u'Rk v.

The “only if” part follows immediately from the definitions. For the “if” part, suppose that
u'Rk v. To show that u≡Rk v, we must build an automorphism ρ ofR such that ρ(u)= v.
This is done by a back-and-forth construction, as in Lemma 17.3.5, using the extension
axioms satisfied byR (see Exercise 17.18).

Because there are finitely many patterns of connection and equality among k vertexes,
there are finitely many equivalence classes of'Rk , so of≡Rk . Due to genericity of the while
computation, each ϕi(R) is a union of such equivalence classes (see Exercise 16.6 in the
previous chapter). Thus there must exist m, l, 0 ≤ m < l, such that ϕm(R) = ϕl(R). Let
N =m and p = l −m. Then for each n≥N , ϕn(R)= ϕn+p(R). It follows that:

(1) {ϕi(R)}i>0 is periodic.

Using this fact, we show the following:

(2) The sequence {ϕi(R)}i>0 converges.

(3) The sentence ξ is equivalent almost surely to some CALC sentence σ .

Before proving these, we argue that (2) and (3) will imply the statement of the theorem.
Suppose that (2) and (3) holds. Suppose also that σ is false in R. By Lemma 17.3.6, σ is
almost surely false. Then µn(ξ) ≤ µn(ξ �≡ σ) + µn(σ) and both µn(ξ �≡ σ) and µn(σ)
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converge to 0, so limn→∞(µn(ξ)) = 0. Thus ξ is also almost surely false. By a similar
argument, ξ is almost surely true if σ is true inR.

We now prove (2). Let$ij be the CALC sentence stating that ϕi and ϕj are equivalent.
Suppose {ϕi(R)}i>0 does not converge. Thus the period of the sequence is greater than 1,
so there exist m, j, l,m < j < l, such that

ϕm(R)= ϕl(R) �= ϕj(R).

ThusR satisfies the CALC sentence

χ =$ml ∧ ¬$mj.

Let I range over finite databases. Because ξ is defined on all finite inputs, {ϕi(I)}i≥0

converges. On the other hand, by the transfer property (Lemma 17.3.6), χ is almost surely
true. It follows that the sequence {ϕi(I)}i>0 diverges almost surely. In particular, there exist
finite I for which {ϕi(I)}i>0 diverges (a contradiction).

The proof of (3) is similar. By (1) and (2), the sequence {ϕi(R)}i>0 becomes constant
after finitely many iterations, say N . Then ξ is equivalent onR to the CALC sentence σ =
∃,x(ϕN(,t)). Suppose R satisfies ξ . Thus R satisfies σ . Furthermore, R satisfies $N(N+1)

because {ϕi(R)}i>0 becomes constant at the N th iteration. Thus R satisfies σ ∧$N(N+1).
By the transfer property for CALC, σ ∧ $N(N+1) is almost surely true. For each finite
instance I where $N(N+1) holds, {ϕi(I)}i>0 converges after N iterations, so ξ is equiva-
lent to σ . It follows that ξ is almost surely equivalent to σ . The case where R does not
satisfy ξ is similar.

Thus we have shown that while sentences have a 0-1 law. It follows immediately
that many queries, including even, are not while sentences. The technique of 0-1 laws has
been extended successfully to languages beyond while. Many languages that do not have
0-1 laws are also known, such as existential second-order logic (see Exercise 17.21). The
precise border that separates languages that have 0-1 laws from those that do not has yet to
be determined and remains an interesting and active area of research.

17.4 The Impact of Order

In this section, we consider in detail the impact of order on the expressive power of query
languages. As mentioned at the beginning of this chapter, we view the assumption of order
as, in some sense, suspending the data independence principle in a database. Because
data independence is one of the main guiding principles of the pure relational model, it
is important to understand its consequences in the expressiveness and complexity of query
languages.

As illustrated by the even query, order can considerably affect the expressiveness of a
language and the difficulty of computing some queries. Without the order assumption, no
expressiveness results are known for the complexity classes of ptime and below; that is, no
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P succ

b a c a b

b b d b c

c a d c d

d b a

Figure 17.5: An ordered instance

languages are known that express precisely the queries of those complexity classes. With
order, there are numerous such results. We present two of the most prominent ones.

At the end of this section, we present two recent developments that further explore
the interplay of order and expressiveness. The first is a normal form for while queries that,
speaking intuitively, separates a while query into two components: one unordered and the
second ordered. The second development increases expressive power on unordered input
by introducing nondeterminism in queries.

We begin by making the notion of an ordered database more precise. A database is
said to be ordered if it includes a designated binary relation succ that provides a successor
relation on the constants occurring in the database. A query on an ordered database is a
query whose input database schema contains succ and that ranges only over the ordered
instances of the input database schema.

Example 17.4.1 Consider the database schema R = {P, succ}, where P is ternary. An
ordered instance of R is represented in Fig. 17.5. According to succ, a is the first constant,
b is the successor of a, c is the successor of b, and d is the successor of c. Thus a, b, c, d
can be identified with the integers 1, 2, 3, 4, respectively.

We now consider the power of fixpoint and while on ordered databases. In particular,
we prove the fundamental result that fixpoint expresses precisely qptime on ordered data-
bases, and while expresses precisely qpspace on ordered databases. This shows that order
has a far-reaching impact on expressiveness, well beyond isolated cases such as the even
query. More broadly, the characterization of qptime by fixpoint (with the order assump-
tion) provides an elegant logical description of what have traditionally been considered
the tractable problems. Beyond databases, this is significant to both logic and complexity
theory.

Theorem 17.4.2

(a) Fixpoint expresses qptime on ordered databases.

(b) While expresses qpspace on ordered databases.

Proof Consider (a). We have already seen that fixpoint ⊆ qptime (see Exercise 17.11),
and so it remains to show that all qptime queries on ordered databases are expressible in
fixpoint. Let q be a query on a database with schema R that includes succ, such that q is



448 First Order, Fixpoint, and While

in qptime on the ordered instances of R. Thus there is a polynomial p and Turing machine
M ′ that, on input enc(I)#enc(u), terminates in time p(|enc(I)#enc(u)|) and accepts the
input iff u ∈ q(I). (In this section, encodings of ordered instances are with respect to the
enumeration of constants provided by succ; see also Chapter 16.) Because q(I) has size
polynomial in I, a TMM can be constructed that runs in polynomial time and that, on input
enc(I), produces as output enc(q(I)). We now describe the construction of a CALC+µ+
query qM that is equivalent to q on ordered instances of R.

The fixpoint query qM we construct, when given ordered input I, will operate in three
phases: (α) construct an encoding of I that can be used to simulate M; (β) simulate M;
and (γ ) decode the output of M . A key point throughout the construction is that qM is
inflationary, and so it must compute without ever deleting anything from a relation. Note
that this restriction does not apply to (b), which simplifies the simulation in that case.

We next describe the encoding used in the simulation of M . The encoding is centered
around a relation that holds the different configurations reached by M .

Representing a tape. Because the tape is infinite, we only represent the finite portion,
polynomial in length, that is potentially used. We need a way to identify each cell of the
tape. Let nc be the number of constants in I. Because M runs in polynomial time, there
is some k such that M on input enc(I) takes time ≤ nkc, and thus ≤ nkc tape cells (see also
Exercise 16.12 in the previous chapter). Consider the world of k-tuples with entries in the
constants from I. Note that there are nkc such tuples and that they can be lexicographically
ordered using succ. Thus each cell can be uniquely identified by a k-tuple of constants
from I. One can define by a fixpoint query a 2k-ary relation succk providing the successor
relation on k-tuples, in the lexicographic order induced by succ (see Exercise 17.23a). The
ordered k-tuples thus allow us to represent a sequence of cells and hence M’s tape.

Representing all the configurations. Note that one cannot remove the tuples represent-
ing old configurations of M due to the inflationary nature of fixpoint computations. Thus
one represents all the configurations in a single relation. To distinguish a particular config-
uration (e.g., that at time i, i ≤ nkc), k-columns are used as timestamp. Thus to keep track of
the sequence of configurations in a computation of M , one can use a (2k + 2)-ary relation
RM where

1. the first k columns serve as a timestamp for the configuration,

2. the next k identify the tape cells,

3. column (2k + 1) holds the content of the cell, and

4. column (2k + 2) indicates the state and position of the head.

Note that now we are dealing with a double encoding: The database is encoded on the tape,
and then the tape is encoded back into RM .

To illustrate this simple but potentially confusing situation, we consider an example.
Let R = {P, succ}, and let I be the ordered instance of R represented in Fig. 17.5. Then
enc(I) is represented in Fig. 17.6. We assume, without loss of generality, that symbols
in the tape alphabet and the states of M are in dom. Parts of the first two configurations
are represented in the relation shown in Fig. 17.7. The representation assumes that k = 4,
so the arity of the relation is 10. Because this is a single-volume book, only part of the
relation is shown. More precisely, we show the first tuples from the representation of the
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P[1#0#10][1#1#11][10#0#11][11#1#0]succ[0#1][1#10][10#11]

Figure 17.6: Encoding of I and u on a TM tape

first two configurations. It is assumed that the original state is s and the head points to
the first cell of the tape; and that in that state, the head moves to the right, changing P to
0, and the machine goes to state r . Observe that the timestamp for the first configuration
is 〈a, a, a, a〉, and 〈a, a, a, b〉 for the second. Observe also the numbering of tape cells:
〈a, a, a, a〉, . . . , 〈a, a, c, d〉, etc.

We can now describe the three phases of the operation of qM more precisely: For a
given ordered instance I, qM

(α) computes, in RM , a representation of the initial configuration of M on input enc(I);

(β) computes, also in RM , the sequence of consecutive configurations of M until termina-
tion; and

(γ ) decodes the final tape contents of M , as represented in RM , into the output
relation.

We sketch the construction of the fixpoint queries realizing (α) and (β) here, and we leave
(γ ) as an exercise (17.23).

Consider phase (α). Recall that each constant is encoded on the tape of M as the
binary representation of its rank in the successor relation succ (e.g., c as 10). To perform
the encoding of the initial configuration, it is useful first to construct an auxiliary relation
that provides the encoding of each constant. Because there are nc constants, the code of
each constant requires ≤ #log(nc)$ bits, and thus less than nc bits. We can therefore use a
ternary relation constant_coding to record the encoding. A tuple 〈x, y, z〉 in that relation
indicates that the kth bit of the encoding of constant x is z, where k is the rank of constant y
in the succ relation. For instance, the relation constant_coding corresponding to the succ in
Fig. 17.5 is represented in Fig. 17.8. The tuples 〈c, a, 1〉 and 〈c, b, 0〉 indicate, for instance,
that c is encoded as 10. It is easily seen that constant_coding is definable from succ by a
fixpoint query (see Exercise 17.23b).

With relation constant_coding constructed, the task of computing the encoding of
I and u into RM is straightforward. We will illustrate this using again the example in
Fig. 17.5. To encode relation P , one steps through all 3-tuples of constants and checks if a
tuple in P has been reached. To step through the 3-tuples, one first constructs the successor
relation succ3 on 3-tuples. The first tuple in P that is reached is 〈b, a, c〉. Because this
is the first tuple encoded, one first inserts into RM the identifying information for P (the
first tuple in Fig. 17.7). This proceeds, yielding the next tuples in Fig. 17.7. The binary
representation for each of b, a, c is obtained from relation constant_coding. This proceeds
by moving to the next 3-tuple. It is left to the reader to complete the details of the fixpoint
query constructing RM (see Exercise 17.23c). Several additional relations have to be used
for bookkeeping purposes. For instance, when stepping through the tuples in succ3, one
must keep track of the last tuple that has been processed.

We next outline the construction for (β). One must simulate the computation of M
starting from the initial configuration represented in RM . To construct a new configuration
from the current one, one must simulate a move of M . This is repeated until M reaches
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Figure 17.7: Coding of part of the (first two) configurations

a final state (accepting or rejecting), which, as we assumed earlier, happens after at most
nkc steps. The iteration can be performed using the fixpoint operator in CALC + µ+. Each
step consists of defining the new configuration from the current one, timestamping it, and
adding it to RM . This can be done with a CALC formula. For instance, suppose the current
state of M is q, the content of the current cell is 0, and the corresponding move of M is to
change 0 to 1, move right, and change states from q to r . Suppose also that
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constant_coding

a a 0

b a 1

c a 1

c b 0

d a 1

d b 1

Figure 17.8: The relation constant_coding corresponding to a,b,c,d

• ,t is the timestamp (in the example this is a 4-tuple) identifying the current configu-
ration,

• RM contains the tuple 〈,t, ,j, 0, q〉, where ,j specifies a tape cell (in the example again
with a 4-tuple), and

• ,t ′ is the next timestamp and ,j ′ the next cell [i.e., succk(,t, ,t ′) and succk(,j, ,j ′)].
The tuples describing the new configuration of M are

(a) 〈,t ′,,i, x, y〉 if ,i �= ,j , ,i �= ,j ′ and 〈,t,,i, x, y〉 ∈ RM ;

(b) 〈,t ′, ,j, 1, 0〉;
(c) 〈,t ′, ,j ′, x, r〉 if 〈,t, ,j ′, x, 0〉 ∈ RM .

In other words, (a) says that the cells other than the j th cell and the next cell remain
unchanged; (b) says that the content of cell j changes from 0 to 1, and the head no longer
points to the j th cell; finally, (c) says that the head points to the right adjacent cell, the
new state is r , and the content of that cell is unchanged. Clearly, (a) through (c) can be
expressed by a CALC formula (Exercise 17.23d). One such formula is needed for each
move of M , and the formula corresponding to the finite set of possible moves is obtained
by their disjunction.

We have outlined queries that realize (α) and (β) (i.e., perform the encoding needed
to runM and then simulate the run ofM). Using these fixpoint queries and their analog for
phase (γ ), it is now easy to construct the fixpoint query qM that carries out the complete
computation of q. This completes the proof of (a).

The construction for (b) is similar. The difference lies in the fact that a while computa-
tion need not be inflationary, unlike fixpoint computations. This simplifies the simulation.
For instance, only the tuples corresponding to the current configuration of M are kept in
RM (Exercise 17.24).

Although ptime is considered synonymous with tractability in many circumstances,
complexity classes lower than ptime are most useful in practice in the context of potentially
large databases. There are numerous results that extend the logical characterization of
qptime to lower complexity classes for ordered databases. For instance, by limiting the
fixpoint operator in fixpoint to simpler operators based on various forms of transitive
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closure, one can obtain languages expressing qlogspace and qnlogspace on ordered
databases.

Theorem 17.4.2 implies that the presence of order results in increased expressive
power for the fixpoint and while queries. For these languages, this is easily seen (for in-
stance, even can be expressed by fixpoint when an order is provided). For weaker lan-
guages, the impact of order may be harder to see. For instance, it is not obvious whether
the presence of order results in increased expressive power for CALC. The query even is of
no immediate help, because it cannot be expressed by CALC even in the presence of order
(Exercise 17.8). However, a more complicated query based on even can be used to show
that CALC does indeed become more expressive with an order (Exercise 17.27). Because
the CALC queries on ordered instances remain in ac0, this shows in particular that there
are queries in ac0 that CALC cannot express.

From Chaos to Order: A Normal Form for While

We next discuss informally a normal form for the while queries that provides a bridge be-
tween computations without order and computations with order. This helps us understand
the impact of order and the cost of computation without order.

The normal form says, intuitively, that each while query on an unordered instance can
be reduced to a while query over an ordered instance via a fixpoint query. More precisely,
a while program in the normal form consists of two phases. The first is a fixpoint query
that performs an analysis of the input. It computes an equivalence relation on tuples that
is a congruence with respect to the rest of the computation, in that equivalent tuples are
treated identically throughout the computation. Thus each equivalence class is treated as
an indivisible block of tuples that is never split later in the computation. The fixpoint
query outputs the equivalence classes in some order, so that each class can be thought of
abstractly as an integer. The second phase consists of a while query that can be viewed as
computing on an ordered database obtained by replacing each equivalence class produced
in the analysis phase by its corresponding integer.

The normal form also allows the clarification of the relationship between fixpoint
and while. Because on ordered databases the two languages express qptime and qpspace,
respectively, the languages are equivalent on ordered databases iff ptime = pspace. What
about the relationship of these languages without the order assumption? It turns out that the
normal form can be used to extend this result to the general case when no order is present.

We do not describe the normal form in detail, but we provide some intuition on how a
query on an unordered database reduces to a query on an ordered database.

Consider a while program q and a particular instance. There are only finitely many
CALC queries that are used in q, and the number of their variables is bounded by some
integer, say k. To simplify, assume that the input instance consists of a single relation I
of arity k and that all relations used in q also have arity k. We can further assume that all
queries used in assignment statements are either conjunctive queries or the single algebra
operations −,∪, and that no relation name occurs twice in a query. For a query ϕ in q,
ϕ(R1, . . . , Rn) indicates that R1, . . . , Rn are the relation names occurring in ϕ.

Consider the set J of k-tuples formed with the constants from I . First we can distin-
guish between tuples based on their presence in (or absence from) I . This yields a first par-
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tition of J . Now using the conjunctive queries occurring in q, we can iteratively refine this
partition in the following way: If for some conjunctive query ϕ(R1, . . . , Rn) occurring in
q and some blocks B1, . . . , Bn of the current partition ϕ(B1, . . . , Bn) and ¬ϕ(B1, . . . , Bn)

have nonempty intersection with some block B ′ of the current partition, we refine the par-
tition by splitting the block B ′ into B ′ ∩ ϕ(B1, . . . , Bn) and B ′ ∩ ¬ϕ(B1, . . . , Bn). This is
repeated until no further refinement occurs, yielding a final partition of J . Furthermore, the
blocks can be numbered as they are produced, which provides an ordering 〈J1, . . . , Jm〉 of
the blocks of the partition. The entire computation can be performed by a fixpoint query
constructed from q.

It is important to note that two tuples u, v in one block of the final partition cannot be
separated by the computation of q on input I (i.e., at each step of this computation, each
relation either contains both u and v or none). In other words, each relation contains a union
of blocks of the final partition. Then one can reduce the original computation to an abstract
computation q ′ on the integers by replacing the ith block of the partition by integer i. Thus
the original query q can be rewritten as the composition of a fixpoint query f followed by
a while query q ′ that essentially operates on an ordered input.

Using this normal form, one can show the following:

Theorem 17.4.3 While = fixpoint iff ptime = pspace.

Crux The “only if” part follows from Theorem 17.4.2. The normal form is used for the
“if” part as follows. Suppose ptime = pspace. Then qptime = qpspace. Let q be a while
query. By the normal form, q = f q ′, where f is a fixpoint query and q ′ is a while query
whose computation is isomorphic to that of a while query on an ordered domain. Because
q ′ is in pspace and pspace = ptime, q ′ is in ptime. By Theorem 17.4.2(a), there exists a
fixpoint query f ′ equivalent to q ′ on the ordered domain. Thus q is equivalent to ff ′ and
is a fixpoint query.

An Alternative to Order: Nondeterminism

Results such as Theorem 17.4.2 show that the presence of order can solve some of the
problems of expressiveness of query languages. This can be interpreted as a trade-off
between expressiveness and the data independence provided by the abstract interface to
the database system. We conclude this section by considering an alternative to order for
increasing expressive power. It is based on the use of nondeterminism.

We will use the following terminology. A deterministic query is a classical query that
always produces at most one output for each input instance. A nondeterministic query is a
query that may have more than one possible outcome on a given input instance. Generally
we assume that all possible outcomes are acceptable as answers to the query. For example,
the query “Find one cinema showing Casablanca” is nondeterministic.

Consider again the query even, which is not expressible by fixpoint or while. The query
even is easily computed by fixpoint in the presence of order (see Exercise 17.25). Another
way to circumvent the difficulty of computing even is to relax the determinism of the query
language. If one could choose, whenever desired, an arbitrary element from the set, this
would provide another way of enumerating the elements of the set and computing even.
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Figure 17.9: An application of witness

The drawback is that, with such a nondeterministic construct in the language, determinism
of queries can no longer be guaranteed.

The trade-offs based on order and nondeterminism are not unrelated, as it may seem
at first. Suppose that an order is given. As argued earlier, this comes down to suspending
the data independence principle and accessing the internal representation. In general, the
computation may depend on the particular order accessed. Then at the conceptual level,
where the order is not visible, the mapping defined by the query appears as nondeterminis-
tic. Different outcomes are possible for the same conceptual-level view of the input. Thus
the trade-offs based on order and on relaxing determinism are intimately connected.

To illustrate this, we exhibit nondeterministic versions of the while(+) and
CALC+µ(+) queries. In both cases we obtain exactly the (deterministic and nondeter-
ministic) queries computable in polynomial space (time). Analogous results can be shown
for lower complexity classes of queries.

Consider first the algebraic setting. We introduce a new operator called witness that
provides the nondeterminism. To illustrate the use of this operator, consider the relation I
in Fig. 17.9. An application of witnessB to I may lead to several results [i.e., witnessB(I)
is either I1, I2, I3 or I4]. Intuitively, for each x occurring in the A column, witnessB
selects some tuple 〈x, y〉 in I , thus choosing nondeterministically a B value y for x.
More generally, for each relation J over some schema U = XY , X ∩ Y = ∅, witnessY (I )
selects one tuple 〈,x, ,y〉 for each 〈,x〉 occurring inGX(J ). Observe that from this definition,
witnessU(J ) selects one tuple in J (if any).

It is also possible to describe the semantics of the witness operator using functional
dependencies: For each instance J over some schema XY , X ∩ Y = ∅, a possible result
of witnessY (J ) is a maximal subinstance J ′ of J satisfying X→ Y (i.e., such that the
attributes in X form a key).

The witness operator provides, more generally, a uniform way of obtaining nondeter-
ministic counterparts for traditional deterministic languages.

The extension of while(+) with witness is denoted by while(+)+W . Following is a
useful example that shows that an arbitrary order can be constructed using the witness
operator.

Example 17.4.4 Consider an input instance over some unary relation schema R. The
following while+W query defines all possible successor relations on the constants from
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Figure 17.10: Some steps in the computation of an ordering

the input (i.e., each run constructs some ordering of the constants from the input; we use
the unnamed perspective):

succ := witness12(σ1�=2(R × R));
max := π2(succ); R := R − (π1(succ) ∪ π2(succ));
while change do

begin
succ := succ ∪ witness12(max × R);
max := π2(succ)− π1(succ);
R := R − max
end

The result is constructed in a binary relation succ. A unary relation max contains the current
maximum element in succ. Some steps of a possible computation on input R = {a, b, c, d}
are shown in Fig. 17.10: (a) shows the state before the loop is first entered, (b) the state
after the first execution of the loop, and (c) the final state. Note that the output is empty if
R contains fewer than two constants. It is of interest to observe that the program uses only
the ability of witness to pick an arbitrary tuple from a relation.

This query can also be expressed in while++W . (See Exercise 17.31.)

To continue with the nondeterministic languages, we next consider the language
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CALC+µ(+). The nondeterminism is again provided by a logical operator called wit-
ness4 and denoted W . Suppose ϕ(,x, ,y) is a formula with free variables ,x, ,y. Intuitively,
W ,yϕ(,x, ,y) indicates that one “witness” ,yx is chosen for each ,x satisfying ∃ ,y ϕ(,x, ,y).
For example, if R consists of the relation I in Fig. 17.9, the formula WyR(x, y) defines
the possible answers I1, I2, I3, I4 in the same figure. [Thus WyR(x, y) is equivalent to
witnessB(R).] More precisely, for each formula ϕ(,x, ,y) (where ,x and ,y are vectors of the
variables that are free in ϕ),W ,yϕ(,x, ,y) is a formula (where the ,y remain free) defining the
set of relations I such that for some J defined by ϕ: I⊆ J; and for each ,x for which 〈,x, ,y〉
is in J for some ,y, there exists a unique ,yx such that 〈,x, ,yx〉 is in I.

The extension of CALC+µ(+) with the witness operator is denoted by
CALC+µ(+)+W . Following is a useful example that shows that an arbitrary order
can be constructed using CALC+µ++W .

Example 17.4.5 Consider the (unary) relation schemaR of Example 17.4.4. The follow-
ing CALC+µ++W query defines, on each instance I of R, all possible successor relations
on the constants in I . (The output is empty if I contains fewer than two constants.) The
query uses a binary relation schema succ, which is used to construct the successor relation
iteratively. The query is µ+succ(ϕ(succ))(x, y), where ϕ = ϕ1 ∨ ϕ2 and

ϕ1(x, y)=¬∃x∃y(succ(xy)) ∧ Wxy(R(x) ∧ R(y) ∧ x �= y),
ϕ2(x, y)=Wy(R(y) ∧ ¬∃z(succ(yz) ∨ succ(zy))) ∧ ∃z(succ(zx)) ∧ ¬∃z(succ(xz)).

The formula ϕ1 initializes the iteration when succ is empty; ϕ2 adds to succ a tuple
〈x, y〉, where y is an arbitrarily chosen element of I(R) not yet in succ and x is the current
maximum element in succ.

The ability of while++W and CALC+µ++W to define nondeterministically a suc-
cessor relation on the constants suggests that the impact of nondeterminism on expressive
power is similar to that of order. This is confirmed by the following result.

Theorem 17.4.6 The set of deterministic queries that are expressed by while++W or
CALC+µ++W is qptime.

Proof It is easy to verify that each deterministic query expressed by while+ +W is in
qptime. Conversely, let q be a query in qptime. By Theorem 17.4.2, there exists a while+
query w that expresses q if a successor relation succ on the constants is given. Then the
while++W query expressing q consists of the following:

(i) construct a successor relation succ on the constants, as in Example 17.4.5;

(ii) apply query w to the input instance together with succ.

4 The witness operator is related to Hilbert’s ε-symbol [Lei69], but its semantics is different. In
particular, the ε-symbol does not yield nondeterminism.
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An analogous result holds for while+W and CALC+µ+W . Specifically, the set of
deterministic queries expressible by these languages is precisely qpspace.

Note that Theorem 17.4.6 does not provide a language that expresses precisely
qptime, because nondeterministic queries can also be expressed and it is undecidable if
a while++W or CALC+µ++W query defines a deterministic query (Exercise 17.32). In-
stead the result shows the power of nondeterministic constructs and so points to a trade-off
between expressive power and determinism.
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Figure 17.11: Encoding of an instance and tuple
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for infinitary logic with finitely many variables [KV92], both of which subsume while.
For instance, 0-1 laws were proven for existential second-order sentences ∃Q1 . . . ∃Qkσ ,
where the Qi are relation variables and σ is a CALC formula in prenex form, whose
quantifier portion has one of the shapes ∃∗∀∗ or ∃∗∀∃∗. It is known that arbitrary existential
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Exercises

Exercise 17.1 Consider the CALC query on a database schema with one binary relation G:

ϕ = {x | ∃y∀z(G(x, y) ∧ ¬G(z, x))}.

Consider the instance I overG and tuple encoded on a Turing input tape, as shown in Fig. 17.11.
Describe in detail the computation of the Turing machine Mϕ, outlined in the proof of Theo-
rem 17.1.1, on this input.

♠Exercise 17.2 Prove Theorem 17.1.2.

Exercise 17.3 Prove that ≡r is an equivalence relation on instances.

Exercise 17.4 Outline the crux of Theorem 17.2.2 for the case where

ϕ = ∀x (∃y (R(xy)) ∨ ∀z (R(zx))).

(Note that the quantifier depth of ϕ is 2, so this case involves games with two moves.)

.Exercise 17.5 Provide a complete description of the winning strategy outlined in the crux of
Proposition 17.2.3. Hint: For the game with r moves, choose cycles of size at least r(2r+1− 1).
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Exercise 17.6 Extend Proposition 17.2.3 by showing that connectivity of graphs is not first-
order definable even if an order ≤ on the constants is provided. More precisely, let R be the
database schema consisting of two binary relations G and ≤. Let I≤ be the family of instances
I over R such that I(≤) provides a total order on the constants of I(G). Outline a proof that there
is no CALC sentence σ such that, for each I ∈ I≤,

σ(I) is true iff I(G) is a connected graph.

♠Exercise 17.7 [Kol83] Use Ehrenfeucht-Fraissé games to show that the following properties
of graphs are not first-order definable:

(i) the number of vertexes is even;

(ii) the graph is 2-colorable;

(iii) the graph is Eulerian (i.e., there exists a cycle that passes through each edge exactly
once).

.Exercise 17.8 Show that the property that the number of elements in a unary relation is even
is not first-order definable even if an order on the constants is provided.

The following two exercises lead to a proof of the converse of Theorem 17.2.2. It states that
instances that are undistinguishable by CALC sentences of quantifier depth r are equivalent
with respect to ≡r . This is shown by proving that each equivalence class of ≡r is definable
by a special CALC sentence of quantifier depth r , called the r-type of the equivalence class.
Intuitively, the r-type sentence describes all patterns that can be detected by playing games of
length r on pairs of instances in the equivalence class.

To define the r-types, one first defines formulas with m free variables, called (m, r)-types.
An r-type is defined as a (0, r)-type. The set of (m, r)-types is defined by backward induction
on m as follows.

An (r, r)-type consists of all satisfiable formulas ϕ with variables x1, . . . , xr such that ϕ is
a conjunction of literals overR and for each i1, . . . , ik, either R(xi1, . . . , xik) or ¬R(xi1, . . . , xik)
is in ϕ. Suppose the set of (m+ 1, r)-types has been defined. Each set S of (m+ 1, r)-types
gives rise to one (m, r)-type defined by∨

{ ∃xm+1 ϕ | ϕ ∈ S} ∨
∨
{∀xm+1 (¬(ϕ)) | ϕ �∈ S}.

♠Exercise 17.9 [Kol83] Let r and m be positive integers such that 0 ≤m≤ r . Prove that

(a) every (m, r)-type is a CALC formula with free variables x1, . . . , xm and quantifier
depth (r −m);

(b) there are only finitely many distinct (m, r)-types; and

(c) for every instance I and sequence a1, . . . , am of constants in I, there is exactly one
(m, r)-type ϕ such that I satisfies ϕ(a1, . . . , am).

♠Exercise 17.10 [Kol83] Prove that each equivalence class of ≡r is definable by a CALC
sentence of quantifier depth r . Hint: For a given equivalence class of ≡r , consider an instance
in the class and the unique r-type satisfied by the instance.

Exercise 17.11 Complete the proof of Theorem 17.3.1; specifically show that

(a) fixpoint ⊆ qptime and while ⊆ qpspace, and
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(b) fixpoint is complete in ptime and while is complete in pspace.

Exercise 17.12 In the proof of Proposition 17.3.2, the case of assignments of the form T :=
Q1×Q2 was discussed. Describe the constructions needed for the other algebra operators. Point
out where the assumption that the size of I is greater than N is used.

.Exercise 17.13 Prove that the while queries collapse to CALC on unary relation inputs. More
precisely, let R be a database schema consisting of unary relations. Show that for each while
query w on R there exists a CALC query ϕ equivalent to it. Hint: Use the same approach as in
the proof of Proposition 17.3.2 to show that there is a constant bound on the length of runs of a
given while program on unary inputs.

.Exercise 17.14 Describe how to generalize the proof of Proposition 17.3.2 so that it handles
while queries that have constants. In particular, describe how the notion of hyperplanes needs
to be generalized.

Exercise 17.15 Recall the technique of hyperplanes used in the proof of Proposition 17.3.2.

(a) LetD ⊆ dom be finite. For a relation schemaR, the cross-product instance ofR over
D is IR×D =D × · · · ×D (arity of R times). The cross-product instance of database
schema R over D is the instance IR

×D, where IR
×D(R)= IR×D for each R ∈ R. Let P

be a datalog¬ program with no constants, input schema R, and output schema S with
arity k. Prove that there is an N > 0 and a set EP of equivalence relations over [1, k]
such that for each set D ⊆ dom: if |D| ≥N then

P(IR
×D)=

⋃
{H'(D) |' ∈ EP }.

(b) Prove (a) for datalog¬¬ programs.

(c) Generalize your proofs to permit constants in P .

Exercise 17.16 In the proof of Lemma 17.3.6, prove more formally the bound on µn(¬σk).
Prove that its limit is 0 when n goes to∞.

Exercise 17.17 Determine whether the following properties of graphs are almost surely true
or whether they are almost surely false.

(a) Existence of a cycle of length three

(b) Connectivity

(c) Being a tree

Exercise 17.18 Prove that there is a finite number of equivalence classes of k-tuples induced
by automorphisms of the Rado graph. Hint: Each class is completely characterized by the
pattern of connection and equality among the coordinates of the k-tuple. To see this, show that
for all tuples u and v satisfying this property, one can construct an automorphism ρ of the Rado
graph such that ρ(u)= v. The automorphism is constructed using the extension axioms, similar
to the proof of Lemma 17.3.5.

♠Exercise 17.19 Describe how to generalize the development of 0-1 laws for arbitrary input
and for queries involving constants.

Exercise 17.20 Prove or disprove: The properties expressible in fixpoint are exactly the ptime
properties that have a 0-1 law.
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Exercise 17.21 The language existential second-order logic, denoted (∃SO), consists of sen-
tences of the form ∃Qi . . . ∃Qkσ , whereQi are relations and σ is a first-order sentence using the
relations Qi (among others). Show that ∃SO does not have a 0-1 law. Hint: Exhibit a property
expressible in ∃SO that is neither almost surely true nor almost surely false.

.Exercise 17.22 Infinitary logic with finitely many variables, denoted Lω∞ω, is an extension of
CALC that allows formulas with infinitely long conjunctions and disjunctions but using only
a finite number of variables. Show that each while query can be expressed in Lω∞ω. Hint: Start
with a specific example, such as transitive closure.

Exercise 17.23 The following refer to the proof of Theorem 17.4.2.

(a) Describe a fixpoint query that, given a successor relation succ on constants, con-
structs a 2k-ary successor relation succk on k-tuples of constants, in the lexicograph-
ical order induced on k-tuples by succ.

(b) Show that the relation constant_coding can be defined from succ using a fixpoint
query.

(c) Complete the details of the construction of RM by a fixpoint query.

(d) Describe in detail the CALC formula corresponding to the move of M considered in
the proof of Theorem 17.4.2.

(e) Describe in detail the CALC formula used to perform phase γ in the computation of
qM .

(f) Show where the proof of Theorem 17.4.2 breaks down if it is not assumed that the
input instance is ordered.

Exercise 17.24 Spell out the differences in the proofs of (a) and (b) in Theorem 17.4.2.

Exercise 17.25 Write a fixpoint query that computes the parity query even on ordered data-
bases.

Exercise 17.26 Consider queries of the form

Does the diameter of G have property P?

where P is an exptime property of the integers (i.e., a property that can be checked, for integer
n, in time exponential in log n, or polynomial in n). Show that each query as above is a fixpoint
query.

♠Exercise 17.27 [Gur] This exercise shows that there is a query expressible in CALC in the
presence of order that is not expressible in CALC without order. Let R = {D, S}, where D is
unary and S is binary. Consider an instance I of R. Suppose the second column of I(S) contains
only constants from I(D). Then one can view each constant s in the first column of I(S) as
denoting a subset of I(D), namely {x | S(s, x)}. Call an instance I of R good if for each subset
of I(D), there exists a constant representing it. In other words, for each subset T of I(D), there
exists a constant s such that

T = {x | S(s, x)}.

Consider the query q defined by q(I) = true iff I is a good input and |I(D)| is even.

(a) Show that q is not expressible by CALC.
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(b) Show that q is expressible on instances extended with an order relation ≤ on the
constants.

(c) Note that in (b), an order is used instead of the usual successor relation on constants.
Explain the difficulty of proving (b) if a successor relation is used instead of ≤.

Hint: For (a), use Ehrenfeucht-Fraissé games. Consider (b). To check that the input is good,
check that (1) all singleton subsets of I(D) are represented, and (2) if T1 and T2 are represented,
so is T1 ∪ T2. To check evenness of |I(D)| on good inputs, define first from ≤ a successor
relation succD on the constants in I(D); then check that there exists a subset T of I(D) consisting
of the even constants according to succD and that the last element in succD is in T .

♠Exercise 17.28 (Expression complexity [Var82a])

(a) Show that the expression complexity of CALC is within pspace. That is, consider a
fixed instance I and tuple u, and a TMMI,u depending on I and u that, given as input
some standard encoding of a query ϕ in CALC, decides if u ∈ ϕ(I). Show that there
is such a TMMI,u whose complexity is within pspace with respect to |enc(ϕ)|, when
ϕ ranges over CALC.

(b) Prove that in terms of expression complexity, CALC is complete in pspace. Hint:
Use a reduction to quantified propositional calculus (see Chapter 2 and [GJ79]).

(c) Let CALC− consist of the quantifier-free queries in CALC. Show that the expression
complexity of CALC− is within logspace.

Exercise 17.29 Show that

(a) Wx(WyR(x, y)) is not equivalent5 to Wxyϕ(x, y);

(b) Wx(WyR(x, y)) is not equivalent to Wy(WxR(x, y)).

Exercise 17.30 Write a CALC+µ++W formula defining the query even.

Exercise 17.31 Express the query of Example 17.4.4 in while++W .

♠Exercise 17.32 [ASV90] Show that it is undecidable whether a given CALC+µ++W formula
defines a deterministic query. Hint: Use the undecidability of satisfiability of CALC sentences.

♠Exercise 17.33 [AV91a, AV91c]. As seen, the witness operator can be used to obtain nonde-
terministic versions of while(+) and CALC+µ(+). One can obtain nondeterministic versions of
datalog¬(¬) as follows. The syntax is the same, except that heads of rules may contain several
literals, and equality may be used in bodies of rules. The rules of the program are fired one rule
at a time and one instantiation at a time. The nondeterminism is due to the choice of rule and
instantiation used in each firing. The languages thus obtained are denoted N -datalog¬(¬).

(a) Prove that N-datalog¬¬ is equivalent to CALC+µ+W and while+W and expresses
all nondeterministic queries computable in polynomial space.6

(b) Show that N-datalog¬ cannot compute the query P − πA(Q), whereQ is of sort AB
and P of sort A.

5 Two formulas are equivalent iff they define the same set of relations for each given instance.
6 This includes qpspace, the deterministic queries computable in polynomial space.
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(c) Let N-datalog¬∀ be the language obtained by extending N-datalog¬ with universal
quantification in bodies of rules. For example, the program

answer(x) ← ∀y[P(x),¬Q(x, y)]

computes the query P − πA(Q). Prove that N-datalog¬∀ is equivalent to
CALC+µ++W and while++W and expresses all nondeterministic queries com-
putable in polynomial time.

(d) Prove that N-datalog¬ and N-datalog¬∀ are equivalent on ordered databases.

♠Exercise 17.34 (Dynamic choice operator [CGP93]) The following extension of datalog �=
with a variation of the choice operator (see Bibliographic Notes) is introduced in [CGP93].
Datalog �= programs are extended by allowing atoms of the form choice(X,Y) in rules of bodies,
where X and Y are disjoint sets of variables occurring in regular atoms of the rule. Several
choice atoms can appear in one rule. The language obtained is called datalog �=+choice. The
semantics is the following. The choice atoms render the immediate consequence operator of
a datalog �=+choice program P nondeterministic. In each application of TP , a subset of the
applicable valuations is chosen so that for each rule containing an occurrence choice(X,Y), the
functional dependency X→ Y holds. That is, one instantiation for the Y variables is chosen
for each instantiation of the X variables. Moreover, the nondeterministic choices operated at
each application of TP for a given occurrence of a choose atom extend the choices made in
previous applications of TP for that atom. (Thus choose has a more global nature than the
witness operator.) Although negation is not used in datalog�=+choice, it can be simulated. The
following datalog �=+choice program computes in P̄ the complement of a nonempty relation P
with respect to a universal relation T of the same arity [CGP93]:

TAG(X, 0) ← P(X)

TAG(X, 1) ← T (X),COMP(Y, 0)

COMP(X, I)← TAG(X, I), choose(X, I)

P̄ (X) ← COMP(X, 1)

The role of choose in the preceding program is simple. When first applied, it associates with
each X in P the tag I = 0. At the second application, it chooses a tag of 0 or 1 for all tuples in
T . However, tuples in P have already been tagged by 0 in the previous application of choose,
so the tuples tagged by 1 are precisely those in the complement.

(a) Exhibit a datalog�=+choice program that, given as input a unary relation P , defines
nondeterministically the successor relations on the constants in P .

(b) Show that every N-datalog¬ query is expressible in datalog �=+choice (see Exer-
cise 17.33).

(c) Prove that datalog �=+choice expresses exactly the nondeterministic queries com-
putable in polynomial time.

♠Exercise 17.35 [Daw93, Hel92] As shown in this chapter, the fixpoint queries fall short of
expressing all of qptime. For example, they cannot express even. A natural idea is to enrich
the fixpoint queries with additional constructs in the hope of obtaining a language expressing
exactly qptime. This exercise explores one (unsuccessful) possibility, which consists of adding
some finite set of ptime oracles to the fixpoint queries.
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A property of instances over some database schema R is a subset of inst(R) closed under
isomorphisms of dom. Let Q be a finite set of properties, each of which can be checked in ptime.
Let while+(Q) be the extension of while+ allowing loops of the form while q(R1, . . . , Rn) do,
where q ∈Q and R1, . . . , Rn are relation variables compatible with the schema of q. Intuitively,
this allows us to ask whether R1, . . . , Rn have property q. Clearly, while+(Q) generally has
more power than while+. For example, the query even is trivially expressible in while+({even}).
One might wonder if there is choice of Q such that while+(Q) expresses exactly qptime.

(a) Show that for every finite set Q of ptime properties, there exists a single ptime
property q such that while+(Q)≡ while+({q}).

(b) Let while+1 ({q}) denote all while+({q}) programs whose input is one unary relation.
Let ptime[k] denote the set of properties whose time complexity is bounded by some
polynomial of degree k. Show that, for each ptime property q, the properties of unary
relations definable in while+1 ({q}) are in ptime[k] for some k depending only on
q. Hint: Show that for each while+1 ({q}) program there exist N > 0 and properties
q1, . . . , qm of integers where each qi(n) can be checked in time polynomial in n, such
that the program is equivalent to a Boolean combination of tests n≥ j, n= j, qi(n),
where n is the size of the input, 0 ≤ j ≤ N and 1 ≤ i ≤ m. Use the hyperplane
technique developed in the proof of Proposition 17.3.2.

(c) Prove that there is no finite set Q of ptime properties such that while+(Q) expresses
qptime. Hint: Use (a), (b), and the fact that ptime[k] ⊂ ptime by the time hierarchy
theorem.



18 Highly Expressive
Languages

Alice: I still cannot check if I have an even number of shoes.
Riccardo: This will not stand!

Sergio: We now provide languages that do just that.
Vittorio: They can also express any query you can think of.

In previous chapters, we studied a number of powerful query languages, such as the
fixpoint and while queries. Nonetheless, there are queries that these languages cannot

express. As pointed out in the introduction to Chapter 14, fixpoint lies within ptime, and
while within pspace. The complexity bound implies that there are queries, of complexity
higher than pspace, that are not expressible in the languages considered so far. Moreover,
we showed simple, specific queries that are not in fixpoint or while, such as the query even.

In this chapter, we exhibit several powerful languages that have no complexity bound
on the queries they can express. We build up toward languages that are complete (i.e.,
they express all queries). Recall that the notion of query was made formal in Chapter 16.
Basically, a query is a mapping from instances of a fixed input schema to instances of a
fixed answer schema that is computable and generic. Recall that, as a consequence, answers
to queries contain only constants from the input (except possibly for some fixed, finite set
of new constants).

We begin with a language that extends while by providing arbitrary computing power
outside the database; this yields a language denoted whileN , in the style of embedded
relational languages like C+SQL. This would seem to provide the simplest cure for the
computational limitations of the languages exhibited so far. There is no complexity bound
on the queries whileN can express. Surprisingly, we show that, nonetheless, whileN is not
complete. In fact, whileN cannot express certain simple queries, including the infamous
query even. Intuitively, whileN is not complete because the external computation has lim-
ited interaction with the database. Complete languages are obtained by overcoming this
limitation. Specifically, we present two ways to do this: (1) by extending while with the
ability to create new values in the course of the computation, and (2) by extending while
with an untyped version of relational algebra that allows relations of variable arity.

For conciseness, in this chapter we do not pursue the simultaneous development of
languages in the three paradigms—algebraic, logic, and deductive. Instead we choose to
focus on the algebraic paradigm. However, analogous languages could be developed in the
other paradigms (see Exercise 18.22).

466
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18.1 WhileN—while with Arithmetic

The language while is the most powerful of the languages considered so far. We have seen
that it lies within pspace. Thus it does not have full computing power. Clearly, a complete
language must provide such power. In this section, we consider an extension of while that
does provide full computing power outside the database. Nonetheless, we will show that
the resulting language is not complete; it is important to understand why this is so before
considering more exotic ways of augmenting languages.

The extension of while that we consider allows us to perform, outside the database,
arbitrary computations on the integers. Specifically, the following are added to the while
language:

(i) integer variables, denoted i, j, k, . . . ;
(ii) the integer constant 0 (zero);

(iii) instructions of the form increment(i), decrement(i), where i is an integer variable;

(iv) conditional statements of the form if i = 0 then s else s′, where i is an integer
variable and s, s′ are statements in the language;

(v) loops of the form while i > 0 do s, where i is an integer variable and s a program.

The semantics is straightforward. All integer variables are initialized to zero. The
semantics of the while change construct is not affected by the integer variables (i.e., the
loop is executed as long as there is a change in the content of a relational variable).
The resulting language is denoted by whileN .

Because the language whileN can simulate an arbitrary number of counters, it is
computationally complete on the integers (see Chapter 2). More precisely, the following
holds:

Fact For every computable function f (i1, . . . , ik) on integers, there exists a whileN pro-
gram wf that computes f (i1, . . . , ik) for every integer initialization of i1, . . . , ik. In partic-
ular, wf stops on input i1, . . . , ik iff f is defined on (i1, . . . , ik).

In view of this fact, one can use in whileN programs, whenever convenient, statements
of the form n := f (i1, . . . , ik), where n, i1, . . . , ik are integer variables and f is a com-
putable function on the integers. This is used in the following example.

Example 18.1.1 Let G be a binary relation with attributes AB. Consider the query on
the graph G:

square(G)= ∅ if the diameter of G is a perfect square, and G otherwise.

The following whileN program computes square(G) (the output relation is answer; it is
assumed that G �= ∅):

i := 0; T :=G;
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while change do
begin
T := T ∪ πAB(δB→C(T ) ./ δA→C(G));
increment(i);
end;

j := f (i);
answer :=G;
if j > 0 then answer := ∅.

where f is the function such that f (x)= 1 if x is a perfect square and f (x)= 0 otherwise.
(Clearly, f is computable.) Note that, after execution of the while loop, the value of i is the
diameter of G.

It turns out that the preceding program can been expressed in while alone, and even
fixpoint, without the need for arithmetic (see Exercise 18.2). However, this is clearly not
the case in general. For instance, consider the whileN program obtained by replacing f in
the preceding program by some arbitrary computable function.

Despite its considerable power, whileN cannot express certain simple queries, such
as even. There are several ways to show this, just as we did for while. Recall that, in
Chapter 17, it was shown that while has a 0-1 law. It turns out that whileN also has a
0-1 law, although proving this is beyond the scope of this book. Thus there are many
queries, including even, that whileN cannot express. One can also give a direct proof
that even cannot be expressed by whileN by extending straightforwardly the hyperplane
technique used in the direct proof that while cannot express even (Proposition 17.3.2, see
Exercise 18.3).

As in the case of other languages we considered, order has a significant impact on the
expressiveness of whileN . Indeed, whileN is complete on ordered databases.

Theorem 18.1.2 The language whileN expresses all queries on ordered databases.

Crux Let q be a query on an ordered database with schema R. Let I denote an input
instance over R and α the enumeration of constants in I given by the relation succ. By the
definition of query, there exists a Turing machineMq that, given as input encα(I), produces
as output encα(q(I)) (whenever q is defined on I). Because whileN manipulates integers,
we wish to encode I as an integer rather than a Turing machine tape. This can be done easily
because each word over some finite alphabet with k symbols (with some arbitrary order
among the symbols) can be viewed as an integer in base k. For any instance J, let enc∗α(J)
denote the integer encoding of J obtained by viewing encα(J) as an integer. It is easy to see
that there is a computable function fq on the integers such that fq(enc∗α(I))= enc∗α(q(I))
whenever q is defined on I. Furthermore, because whileN can express any computable
function over the integers (see the preceding Fact), there exists a whileN program wfq(i)

that computes fq . It is left to show that whileN can compute enc∗α(I) and can decode q(I)
from enc∗α(q(I)). Recall that, in the proof of Theorem 17.4.2, it was shown that while can
compute a relational representation of encα(I) and, conversely, it can decode q(I) from
the representation of encα(q(I)). A slight modification of that construction can be used to
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Figure 18.1: An application of new

show that whileN can compute the desired integer encoding and decoding. Thus a whileN
program computes q in three phases:

1. compute enc∗α(I);
2. compute fq(enc∗α(I))= enc∗α(q(I));
3. compute q(I) from enc∗α(q(I)).

18.2 Whilenew—while with New Values

Recall that, as discussed in the introduction to Chapter 14, while cannot go beyond pspace
because (1) throughout the computation it uses only values from the input, and (2) it uses
relations of fixed arity. The addition of integers as in whileN is one way to break the space
barrier. Another is to relax (1) or (2). Relaxing (1) is done by allowing the creation of new
values not present in the input. Relaxing (2) yields an extension of while with untyped
algebra (i.e., an algebra of relations with variable arities). In this and the next section, we
describe two languages obtained by relaxing (1) and (2) and prove their completeness.

We first present the extension of while denoted whilenew, which allows the creation of
new values throughout the computation. The language while is modified as follows:

(i) There is a new instruction R := new(S), where R and S are relational variables
and arity(R)= arity(S)+ 1;

(ii) The looping construct is of the form while R do s, whereR is a relational variable.

The semantics of (i) is as follows: Relation R is obtained by extending each tuple of S
by one distinct new value from dom not occurring in the input, the current state, or in the
program. For example, if the value of S is the relation in Fig. 18.1, then R is of the form
shown in that figure. The values α, β, γ are distinct new values1 in dom.

The semantics of while R do s is that statement s is executed while R is nonempty.
We could have used while change instead because each looping construct can simulate the
other. However, in our context of value invention, it is practical to have the more direct
control on loops provided by while R.

1 If arity(S)= 0, then R is unary and contains one new value if S = {〈〉} and is empty if S = ∅. This
allows the creation of values one by one. One might wonder if this kind of one-by-one value creation
is sufficient. The answer is negative. The language with one-by-one value creation is equivalent to
whileN (see Exercise 18.6).
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Note that the new construct is, strictly speaking, nondeterministic. The new values
are arbitrary, so several possible outcomes are possible depending on the choice of values.
However, the different outcomes differ only in the choice of new values. This is formalized
by the following:

Lemma 18.2.1 Let w be a whilenew program with input schema R, and let R be a relation
variable in w. Let I be an instance over R, and let J, J ′ be two possible values of R at the
same point during the execution of w on I. Then there exists an isomorphism ρ from J to
J ′ that is the identity on the constants occurring in I or w.

The proof of Lemma 18.2.1 is done by a straightforward induction on the number of
steps in a partial execution of w on I (Exercise 18.7).

Recall that our definition of query requires that the answer be unique (i.e., the query
must be deterministic). Therefore we must consider only whilenew programs whose an-
swer never contains values introduced by the new statements. Such programs are called
well-behaved whilenew programs. It is possible to give a syntactic restriction on whilenew

programs that guarantees good behavior, can be checked, and yields a class of programs
equivalent to all well-behaved whilenew programs (see Exercises 18.8 and 18.9).

We wish to show that well-behaved whilenew programs can express all queries. First
we have to make sure that well-behaved whilenew programs do in fact express queries. This
is shown next.

Lemma 18.2.2 Each well-behaved whilenew program with input schema R and output
schema answer expresses a query from inst(R) to inst(answer).

Proof We need to show that well-behaved whilenew programs define mappings from
inst(R) to inst(answer) (i.e., they are deterministic with respect to the final answer). Com-
putability and genericity are straightforward. Let w be a well-behaved whilenew program
with input schema R and output answer. Let I, I ′ be two possible values of answer after
the execution of w on an instance I of R. By Lemma 18.2.1, there exists an isomorphism
ρ from I to I ′ that is the identity on values in I or w. Because w is well behaved, answer
contains only values from I or w. Thus ρ is the identity and I = I ′.

Note that although well-behaved programs are deterministic with respect to their final
answer, they are not deterministic with respect to intermediate results that may contain new
values.

We next show that well-behaved whilenew programs express all queries. The basic idea
is simple. Recall that whileN is complete on ordered databases. That is, for each query q,
there is a whileN program w that, given an enumeration of the input values in a relation
succ, computes q. If, given an input, we were able to construct such an enumeration,
we could then simulate whileN to compute any desired query. Because of genericity, we
cannot hope to construct one such enumeration. However, constructing all enumerations
of values in the input would not violate genericity. Both whilenew and the language with
variable arities considered in the next section can compute arbitrary queries precisely in
this fashion: They first compute all possible enumerations of the input values and then
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simulate a whileN program on the ordered database corresponding to each enumeration.
These computations yield the same result for all enumerations because queries are generic,
so the result is independent of the particular enumeration used to encode the database (see
Chapter 16).

Before proving the result, we show how we can construct all the possible enumerations
of the elements in the active domain of the input.

Representation

Let I be an instance over R. Let Success be the set of all binary relations defining a
successor relation over adom(I). We can represent all the enumerations in Success with
a 3-ary relation:

succ=
⋃

I∈Success

I × {αI },

where {αI | I ∈ Success} is a set of distinct new values. [Each such αI is used to denote
a particular enumeration of adom(I).] For example, Fig. 18.2 represents an instance I and
the corresponding succ.

Computation of succ

We now argue that there exists a whilenew program w that, given I, computes succ. Clearly,
there is a whilenew program that, given I, produces a unary relation D containing all values
in I. Following is a whilenew program wsucc that computes the relation succ starting from
D (using a query q explained next):

I succ ŝucc

a b a b α1 a b a b c

a c b c α1 b c a b c

c a a c α2 a c a c b

c b α2 c b a c b

b a α3 b a b a c

a c α3 a c b a c

b c α4 b c b c a

c a α4 c a b c a

c a α5 c a c a b

a b α5 a b c a b

c b α6 c b c b a

b a α6 b a c b a

Figure 18.2: An example of succ and ŝucc
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succ := new(σ1�=2(D ×D));
8 := q;
while 8 do

begin
S := new(8);

succ :=
{
〈x, y, α′〉

∣∣∣∣∣ ∃α, x′, y′[S(x′, y′, α, α′) ∧ succ(x, y, α)]

∨ ∃α[S(x, y, α, α′)]

}
;

8 := q;
end

The intuition is that we construct in turn enumerations of subsets of size 2, 3, etc., until
we obtain the enumerations of D. (To simplify, we assume that D contains more than two
elements.) An enumeration of a subset of D consists of a successor (binary) relation over
that subset. As mentioned earlier, the program associates a marking (invented value) with
each such successor relation.

During the computation, succ contains the successor relation of subsets of size i
computed so far. A triple 〈a, b, α〉 indicates that b follows a in enumeration denoted α.

The first instruction computes the enumerations of subsets of size 2 (i.e., the distinct
pairs of elements of D) and marks them with new values. At each iteration, 8 indicates
for each enumeration the elements that are missing in this enumeration. More precisely,
relation 8 must contain the following set of triples:{

〈a, b, α〉
∣∣∣∣∣ b does not occur in the successor relation corresponding to α

and the last element of α is a.

}

The relational query q computes the set8 given a particular relation succ. If8 is not empty,
for each α a new value α′ is created for each element missing in α (i.e., the enumeration
α is extended in all possible ways with each of the missing elements). This yields as many
new enumerations from each α as missing elements.

This is iterated until 8 becomes empty, at which point all enumerations are complete.
Note that if D contains n elements, the final result succ contains n! enumerations.

Theorem 18.2.3 The well-behaved whilenew programs express all queries.

Crux Let q be a query from inst(R) to inst(answer). Assume the query is generic (i.e.,
C-generic with C = ∅). The proof is easily modified for the case when the query is
C-generic with C �= ∅. It is sufficient to observe that

(*)
for each whileN program,

there exists an equivalent well-behaved whilenew program.

Suppose that (*) holds. Let wsucc be the whilenew program computing succ from given
I over R. By Theorem 18.1.2 and (*), there exists a whilenew program w(succ) that com-
putes q using a successor relation succ. We construct another whilenew program w(succ)
that computes q given I and succ. Intuitively, w(succ) is run in parallel for all possible
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enumerations succ provided by succ. All computations produce the same result and are
placed in answer. The computations for different enumerations in succ are identified by
the α marking the enumeration in succ. To this end, each relation R of arity k in w(succ)
is replaced by a relation R of arity k + 1. The extended database relations are first initial-
ized by statements of the form R := R × π3(succ). Next the instructions of w(succ) are
modified as follows:

• R := {〈u〉 | φ(u)} becomes R := {〈u, α〉 | ∃y∃zsucc(y, z, α) ∧ φ(u, α)}, where
φ(u, α) is obtained from φ(u) by replacing each atom S(v) by S(v, α);

• while change do remains unchanged.

Finally the instruction answer := π1..n(answer), where n= arity(answer), is appended at
the end of the program. The following can be shown by induction on the steps of a partial
execution of w(succ) on I (Exercise 18.10):

(**) At each point in the computation of w(succ) on I, the set of tuples in relation R
marked with α coincides with the value of R at the same point in the computation
when w(succ) is run on I and succ is the successor relation corresponding to α.

In particular, at the end of the computation of w(succ) on I,

answer =
⋃
α

w(α)(I)× {α},

where α ranges over the enumeration markers. Because w(α)(I)= q(I) for each α, it fol-
lows that answer contains q(I) at the end of the computation. Thus query q is computable
by a well-behaved whilenew program.

Thus it remains to show (*). Integer variables are easily simulated as follows. An
integer variable i is represented by a binary variable Ri. If i contains the integer n, then
Ri contains a successor relation for n+ 1 distinct new values:

{〈αj, αj+1〉 | 0 ≤ j < n}.

(The integer 0 is represented by an empty relation and the integer 1 by a singleton
{〈α0, α1〉}.) It is easy to find a whilenew program for increment and decrement of i.

We showed that well-behaved whilenew programs are complete with respect to our
definition of query. Recall that whilenew programs that are not well behaved can compute
a different kind of query that we excluded deliberately, which contains new values in the
answer. It turns out, however, that such queries arise naturally in the context of object-
oriented databases, where new object identifiers appear in query results (see Chapter 21).
This requires extending our definition of query. In particular, the query is nondeterministic
but, as discussed earlier, the different answers differ only in the particular choice of new
values. This leads to the following extended notion of query:

Definition 18.2.4 A determinate query is a relation Q from inst(R) to inst(answer)
such that
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ψ3

ψ0 ψ2

ψ1

b a{a, b}    ⇒

Figure 18.3: A query not expressible in whilenew

• Q is computable;

• if 〈I, J 〉 ∈Q and ρ is a one-to-one mapping on constants, then 〈ρ(I), ρ(J )〉 ∈Q;
and

• if 〈I, J 〉 ∈Q and 〈I, J ′〉 ∈Q, then there exists an isomorphism from J to J ′ that is
the identity on the constants in I .

A language is determinate complete if it expresses only determinate queries and all deter-
minate queries.

Let Q be a determinate query. If 〈I, J 〉 ∈Q and ρ is a one-to-one mapping on con-
stants leaving I fixed, then 〈I, ρ(J )〉 ∈Q.

The question arises whether whilenew remains complete with respect to this ex-
tended notion of query. Surprisingly, the answer is negative. Each whilenew query is
determinate. However, we exhibit a simple determinate query that whilenew cannot ex-
press. Let q be the query with input schema R = {S}, where S is unary, and output G,
where G is binary. Let q be defined as follows: For each input I over S, if I = {a, b}
then q(I )= {〈ψ0, ψ1〉, 〈ψ1, ψ2〉, 〈ψ2, ψ3〉, 〈ψ3, ψ0〉, 〈ψ0, b〉, 〈ψ1, a〉, 〈ψ2, b〉, 〈ψ3, a〉} for
some new elements ψ0, ψ1, ψ2, ψ3, and q(I )= ∅ otherwise (Fig. 18.3).

Theorem 18.2.5 The query q is not expressible in whilenew.

Proof The proof is by contradiction. Suppose w is a whilenew program expressing q.
Consider the sequence of steps in the execution of w on an input I = {a, b}. We can
assume without loss of generality that no invented value is ever deleted from the data-
base (otherwise modify the program to keep all invented values in some new unary rela-
tion). For each invented value occurring in the computation, we define a trace that records
how the value was invented and uniquely identifies it. More precisely, trace(α) is de-
fined inductively as follows. If α is a constant, then trace(α) = 〈α〉. Suppose α is a new
value created at step i with a new statement associating it with tuple 〈x1, . . . , xk〉. Then
trace(α)= 〈i, trace(x1), . . . , trace(xk)〉. Clearly, one can extend trace to tuples and rela-
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tions in the natural manner. It is easily shown (Exercise 18.11) by induction on the number
of steps in a partial execution of w on I that

(†) trace(α)= trace(β) iff α = β;

(‡) for each instance J computed during the execution of w on input I , trace(J ) is closed
under each automorphism ρ of I . In particular, for each α occurring in J , ρ(trace(α))
equals trace(β) for some β also occurring in J .

Consider now trace(q(I )) and the automorphism ρ of I [and therefore of trace(q(I ))]
defined by ρ(a) = b, ρ(b) = a. Note that ρ2 = id (the identity) and ρ = ρ−1. Consider
ρ(trace(ψ0)). Because 〈ψ0, b〉 ∈ q(I ), it follows that 〈trace(ψ0), b〉 ∈ trace(q(I )). Be-
cause ρ(b)= a, it further follows that 〈ρ(trace(ψ0)), a〉 ∈ trace(q(I )) so ρ(trace(ψ0)) is
either trace(ψ1) or trace(ψ3). Suppose ρ(trace(ψ0))= trace(ψ1) (the other case is simi-
lar). From the fact that ρ is an automorphism of trace(q(I )) it follows that ρ(trace(ψ3))=
trace(ψ0), ρ(trace(ψ2)) = trace(ψ3), and ρ(trace(ψ1)) = trace(ψ2). Consider now ρ2.
First, because ρ2 = id , ρ2(trace(ψi)) = trace(ψi), 0 ≤ i ≤ 3. On the other hand,
ρ2(trace(ψ0)) = ρ(ρ(trace(ψ0))) = ρ(trace(ψ1)) = trace(ψ2). This is a contradiction.
Hence q cannot be computed by whilenew.

The preceding example shows that the presence of new values in the answer raises
interesting questions with regard to completeness. There exist languages that express all
queries with invented values in answers (see Exercise 18.14 for a complex construct that
leads to a determinate-complete language). Value invention is common in object-oriented
languages, in the form of object creation constructs (see Chapter 21).

18.3 Whileuty—An Untyped Extension of while

We briefly describe in this section an alternative complete language obtained by relaxing
the fixed-arity requirement of the languages encountered so far. This relaxation is done
using an untyped version of relational algebra instead of the familiar typed version. We will
obtain a language allowing us to construct relations of variable, data-dependent arity in the
course of the computation. Although strictly speaking they are not needed, we also allow
integer variables and integer manipulation, as in whileN . Intuitively, it is easy to see why
this yields a complete language. Variable arities allow us to construct all enumerations of
constants in the input, represented by sufficiently long tuples containing all constants. The
ability to construct the enumerations and manipulate integers yields a complete language.

The first step in defining the untyped version of while is to define an untyped version
of relational algebra. This means that operations must be defined so that they work on
relations of arbitrary, unknown arity. Expressions in the untyped algebra are built from
relation variables and constants and can also use integer variables and constants. Let i, j
be integer variables, and for each integer k, let ∅k denote the empty relation of arity k.
Untyped algebra expressions are built up using the following operations:

• If e, e′ are expressions, then e ∩ e′ and e ∪ e′ are expressions; if arity(e)= arity(e′)
the semantics is the usual; otherwise the result is ∅0.
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• If e is an expression, then ¬e is an expression; the complement is with respect to the
active domain (not including the integers).

• If e, f are expressions, then e× f is an expression; the semantics is the usual cross-
product semantics.

• If e is an expression, then σi=j (e) is an expression, where i, j are integer variables
or constants; if arity(e)≥ max{i, j} the semantics is the usual; otherwise the result
is ∅0.

• If e is an expression, then πij(e) is an expression, where i, j are integer variables or
constants; if i ≤ j and arity(e)≥ max{i, j}, this projects e on columns i through j ;
otherwise the result is ∅|j−i|.

• If e is an expression, then exij (e) is an expression; if arity(e) ≥ max{i, j}, this
exchanges in each tuple in the result of e the i and j coordinates; otherwise the
result is ∅0.

We may also consider an untyped version of tuple relational calculus (see Exer-
cise 18.15).

We can now define whileuty programs. They are concatenations of statements of the
form

• i := j , where i is an integer variable and j an integer variable or constant.

• increment(i), decrement(i), where i is an integer variable.

• while i > 0 do t, where i is an integer variable and t a program.

• R := e, where R is a relational variable and e an untyped algebra expression; the
semantics here is that R is assigned the content and arity of e.

• while R do t, where R is a relational variable and t a program; the semantics is that
the body of the loop is repeated as long as R is nonempty.

All relational variables that are not database relations are initialized to ∅0; integer variables
are initialized to 0.

Example 18.3.1 Following is a whileuty program that computes the arity of a nonempty
relation R in the integer variable n:

S0 := {〈〉}; S1 := S0 ∪ R; S2 :=¬S1;
while S2 do

begin
n := n+ 1;
S0 := S0 ×D;
S1 := S0 ∪ R;
S2 :=¬S1;
end

where D abbreviates an algebra expression computing the active domain [e.g., π11(R) ∪
¬π11(R)]. The program tries out increasing arities for R starting from 0. Recall that
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whenever R and S0 have different arities, the result of S0 ∪R is ∅0. This allows us to detect
when the appropriate arity has been found.

Remark 18.3.2 There is a much simpler set of constructs that yields the same power as
whileuty. In general, programs are much harder to write in the resulting language, called QL,
than in whileuty. One can show that the set of constructs of QL is minimal. The language QL
is described next; it does not use integer variables. QL expressions are built from relational
variables and constant relations as follows (D denotes the active domain):

• equal is an expression denoting {〈a, a〉 | a ∈D}.
• e ∩ e′ and¬e are defined as for whileuty; the complement is with respect to the active

domain.

• If e is an expression, then e ↓ is an expression; this projects out the last coordinate
of the result of e (and is ∅0 if the arity is already zero).

• If e is an expression, then e ↑ is an expression; this produces the cross-product of e
with D.

• If e is an expression, then e ∼ is an expression; if arity(e)≥ 2, then this exchanges
the last two coordinates in each tuple in the result of e. Otherwise the answer is ∅0.

Programs are built by concatenations of assignment statements (R := e) and while state-
ments (while R do s). The semantics of the while is that the loop is iterated as long as R is
nonempty.

We leave it to the reader to check that QL is equivalent to whileuty (Exercise 18.17).
We briefly describe the simulation of integers by QL. Let Z denote the constant 0-ary
relation {〈〉}. We can have Z represent the integer 0 and Z ↑n represent the integer n. Then
increment(n) is simulated by one application of ↑, and decrement(n) is simulated by one
application of ↓. A test of the form x = 0 becomes e ↓= ∅, where e is the untyped algebra
expression representing the value of x. Thus we can simulate arbitrary computations on the
integers.

Recall that our definition of query requires that both the input and output be instances
over fixed schemas. On the other hand, in whileuty relation arities are variable, so in general
the arity of the answer is data dependent. This is a problem analogous to the one we
encountered with whilenew, which generally produces new values in the result. As in the
case of whilenew, we can define semantic and syntactic restrictions on whileuty programs
that guarantee that the programs compute queries. Call a whileuty program well behaved if
its answer is always of the same arity regardless of the input. Unfortunately, it can be shown
that it is undecidable if a whileuty program is well behaved (Exercise 18.19). However, there
is a simple syntactic condition that guarantees good behavior and covers all well-behaved
programs. A whileuty program with answer relation answer is syntactically well behaved if
the last instruction of the program is of the form answer := πmn(R), wherem, n are integer
constants. Clearly, syntactic good behavior guarantees good behavior and can be checked.
Furthermore, it is obvious that each well-behaved whileuty program is equivalent to some
syntactically well-behaved program (Exercise 18.19).
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We now prove the completeness of well-behaved whileuty programs.

Theorem 18.3.3 The well-behaved whileuty programs express all queries.

Crux It is easily verified that all well-behaved whileuty programs define queries. The proof
that every query can be expressed by a well-behaved whileuty program is similar to the
proof of Theorem 18.2.3. Let q be a query with input schema R. We proceed in two steps:
First construct all orderings of constants from the input. Next simulate the whileN program
computing q on the ordered database corresponding to each ordering. The main difference
with whilenew lies in how the orderings are computed. In whileuty, we use the arbitrary arity
to construct a relation R< containing sufficiently long tuples each of which provides an
enumeration of all constants. This is done by the following whileuty program, where D
stands for an algebra expression computing the active domain:

R< := ∅0;
C :=D; arityC := 1;
while C do

begin
R< := C;
C := C ×D; increment(arityC);
for i := 1 to (arityC − 1) do
C := C ∩ ¬σi=arity(C)(C);

end

Clearly, the looping construct f or i := 1 to . . . can be easily simulated. If the size of D
is n, the result of the program is the set of n-tuples with distinct entries in adom(D). Note
that each such tuple t in R< provides a complete enumeration of the constants in D. Next
one can easily construct a whileuty program that constructs, for each such tuple t in R<, the
corresponding successor relation. More precisely, one can construct

ŝucc=
⋃
t∈R<

succt × {t},

where succt = {〈t (i), t (i + 1)〉 | 1≤ i < n} (see Fig. 18.2 and Exercise 18.20).

Untyped languages allow us to relax the restriction that the output schema is fixed.
This may have a practical advantage because in some applications it may be necessary to
have the output schema depend on the input data. However, in such cases one would likely
prefer a richer type system rather than no typing at all.

The overall results on the expressiveness and complexity of relational query languages
are summarized in Figs. 18.4 and 18.5. The main classes of queries and their inclusion
structure are represented in Fig. 18.4 (solid arrows indicate strict inclusion; the dotted
arrow indicates strict inclusion if ptime �= pspace). Languages expressing each class of
queries are listed in Fig. 18.5, which also contains information on complexity (first with-
out assumptions, then with the assumption of an order on the database). In Fig. 18.5,
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Conjunctive queries

Positive-existential

All queries

While

Fixpoint

Stratified datalog¬

Semipositive datalog¬

Datalog

First order

Figure 18.4: Main classes of queries

CALC(∃,∧) denotes the conjunctive calculus and CALC(∃,∧,∨) denotes the positive-
existential calculus.
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The first complete language proposed was the language QL of Chandra and Harel [CH80b].
Chandra also considered a language equivalent to whileN , which he called LC [Cha81a].
It was shown that LC cannot compute even. Several other primitives are considered in
[Cha81a] and their power is characterized. The language whilenew was defined in [AV90],
where its completeness was also shown.

The languages considered in this chapter can be viewed as formalizing practical lan-
guages, such as C+SQL or O2C, used to develop database applications. These languages
combine standard computation (C) with database computation (SQL in the relational world
or O2 in the object-oriented world). In this direction, several computing devices were de-
fined in [AV91b], and complexity-theoretic results are obtained using the devices. First
an extension of Turing machines with a relational store, called relational machine, was
shown to be equivalent to whileN . A further extension of relational machines equivalent to
whilenew and whileuty, called generic machine, was also defined. In the generic machine,
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Class of Complexity
queries Languages Complexity with order

conjunctive CALC(∃,∧) ⊂ logspace ⊂ logspace
SPJR algebra ⊂ ac0 ⊂ ac0

positive- CALC(∃,∧,∨)
existential SPJUR algebra ⊂ logspace ⊂ logspace

nr-datalog ⊂ ac0 ⊂ ac0

datalog datalog ⊂ monotonic ⊂ monotonic
ptime ptime

semipositive semipositive datalog¬ ⊂ ptime = ptime
datalog¬ (with min, max)

first order CALC
ALG ⊂ logspace ⊂ logspace
nr-stratified datalog¬ ⊂ ac0 ⊂ ac0

stratified stratified datalog¬ ⊂ ptime = ptime
datalog¬

fixpoint CALC+µ+
while+
datalog¬ (fixpoint and

well-founded semantics) ⊂ ptime = ptime

while CALC+µ
while
datalog¬¬ (fixpoint semantics) ⊂ pspace = pspace

all queries whileuty no bound no bound
whilenew

Figure 18.5: Languages and complexity

parallelism is used to allow simultaneous computations with all possible successor rela-
tions.

Queries with new values in their answers were first considered in [AK89], in the con-
text of an object-oriented deductive language with object creation, called IQL. The notion
of determinate query [VandBGAG92] is a recasting of the essentially equivalent notion of
db transformation, formulated in [AK89]. In [AK89], the query in Theorem 18.2.5 is also
exhibited, and it is shown that IQL without duplicate elimination cannot express it. Because
IQL is more powerful than whilenew, their result implies the result of Theorem 18.2.5. The
issue of completeness of languages with object creation was further investigated in [AP92,
VandBG92, VandBGAG92, VandBP95, DV91, DV93].
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Finally it is easy to see that each (determinate) query can be computed in some natural
nondeterministic extension of whilenew (e.g., with the witness operator of Chapter 17)
[AV91c]. However, such programs may be nondeterministic so they do not define only
determinate queries.

Exercises

Exercise 18.1 Let G be a graph. Consider a query “Does the shortest path from a to b in G
have property P?” where G is a graph, P is a recursive property of the integers, and a, b are
two particular vertexes of the graph. Show that such a query can be expressed in whileN .

Exercise 18.2 Prove that the query in Example 18.1.1 can be expressed (a) in while; (b) in
fixpoint.

Exercise 18.3 Sketch a direct proof that even cannot be expressed by whileN by extending the
hyperplane technique used in the proof of Proposition 17.3.2.

♠Exercise 18.4 [AV94] Consider the language L augmenting whileN by allowing mixing of
integers with data. Specifically, the following instruction is allowed in addition to those of
whileN : R := {〈i1, . . . , ik〉}, where R is a k-ary relation variable and i1, . . . , ik are integer vari-
ables. It is assumed that the domain of input values is disjoint from the integers. Comple-
ment (or negation) is taken with respect to the domain formed by all values in the database or
program, including the integer values present in the database. The well-behaved L programs
are those whose outputs never contain integers. Show that well-behaved L and whileN are
equivalent.

Exercise 18.5 Complete the proof of Theorem 18.1.2.

♠Exercise 18.6 [AV90] Consider a variation of the language whilenew where the R := new(S)
instruction is replaced by the simpler instruction “R := new” where R is unary. The semantics
of this instruction is that R is assigned a singleton {〈α〉}, where α is a new value. Denote the
new language by whileunary-new.

(a) Show that each query expressible in whileN is also expressible in whileunary-new.
Hint: Use new values to represent integers. Specifically, to represent the integers up
to n, construct a relation succint containing a successor relation on n new values. The
value of rank i with respect to succ represents integer i.

(b) Show that each query expressible in whileunary-new is also expressible in whileN .
Hint: Again establish a correspondence between new values and integers. Then use
Exercise 18.4.

Exercise 18.7 Prove Lemma 18.2.1.

Exercise 18.8 Prove that it is undecidable if a given whilenew program is well behaved.

.Exercise 18.9 In this exercise we define a syntactic restriction on whilenew programs that
guarantees good behavior. Let w be a whilenew program. Without loss of generality, we can
assume that all instructions contain at most one algebraic operation among ∪,−, π,×, σ . Let
the not-well-behaved set of w, denoted Bad(w), be the smallest set of pairs of the form 〈R, i〉,
where R is a relation in w and 1≤ i ≤ arity(R), such that
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(a) if S := new(R) is an instruction in w and arity(S)= k, then 〈S, k〉 ∈ Bad(w);

(b) if S := T ∪R is inw and 〈T , i〉 ∈ Bad(w) or 〈R, i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w);

(c) if S := T − R is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w);

(d) if S := T × R is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w); and if 〈R, j〉 ∈
Bad(w), then 〈S, arity(T )+ j〉 ∈ Bad(w);

(e) if S := πi1...ik(T ) is in w and 〈T , ij〉 ∈ Bad(w), then 〈S, j〉 ∈ Bad(w);

(f) if S := σcond(T ) is in w and 〈T , i〉 ∈ Bad(w), then 〈S, i〉 ∈ Bad(w).

A whilenew program w is syntactically well behaved if

{〈answer, i〉 | 1≤ i ≤ arity(answer)} ∩ Bad(w)= ∅.

(a) Outline a procedure to check that a given whilenew program is syntactically well
behaved.

(b) Show that each syntactically well-behaved whilenew program is well behaved.

(c) Show that for each well-behaved whilenew program, there exists an equivalent syn-
tactically well-behaved whilenew program.

Exercise 18.10 Prove (*) in the proof of Theorem 18.2.3.

Exercise 18.11 Prove (†) and (‡) in the proof of Theorem 18.2.5.

Exercise 18.12 Consider the query q exhibited in the proof of Theorem 18.2.5. Let q2 be the
query that, on input I = {a, b}, produces as answer two copies of q(I ). More precisely, for each
ψi in q(I ), let ψ ′i be a distinct new value. Let q ′(I ) be obtained from q(I ) by replacing ψi by
ψ ′i , and let q2(I )= q(I ) ∪ q ′(I ). Prove that q2 can be expressed by a whilenew program.

♠Exercise 18.13 [DV91, DV93] Consider the instances I, J of Fig. 18.6. Consider a query q
that, on input of the same pattern as I , returns J (up to an arbitrary choice of distinct β, θi) and
otherwise returns the empty instance. Show that q is not expressible in whilenew.

♠Exercise 18.14 (Choose [AK89]) Let whilechoose
new be obtained by augmenting whilenew with the

following (determinate) choose construct. A program w may contain the instruction choose(R)
for some unary relation R. On input I, when choose(R) is applied in a state J, the next state J′
is defined as follows:

(a) if for each a, b in J(R), there is an automorphism of J that is the identity over
adom(I, w) and maps a to b, J′ is obtained from J by eliminating one arbitrary
element in J(R);

(b) otherwise J′ is just J.

Show that whilechoose
new is determinate complete.

Exercise 18.15 One may consider an untyped version of tuple relational calculus. Untyped
relations are used just like typed relations, except that terms of the form t (i) are allowed, where
t is a tuple variable and i an integer variable. Equivalence of queries now means that the queries
yield the same answers given the same relations and values for the integer variables. Show that
untyped relational calculus and untyped relational algebra are equivalent.

Exercise 18.16 Show that exij is not redundant in the untyped algebra.
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α1 a ψ1

α1 b ψ1

α1 b ψ2

α1 c ψ2

α1 c ψ3

α1 d ψ3

α1 d ψ4

α1 a ψ4

α2 a ψ5

α2 b ψ5

α2 b ψ6

α2 c ψ6

α2 c ψ7

α2 d ψ7

α2 d ψ8

α2 a ψ8

3⇒

β a θ1

β b θ1

β b θ2

β c θ2

β c θ3

β d θ3

β d θ4

β a θ4

I J

Figure 18.6: Another query not expressible in whilenew

♠Exercise 18.17 Sketch a proof that whileuty and the language QL described in Remark 18.3.2
are equivalent.

Exercise 18.18 Write a QL program computing the transitive closure of a binary relation.

♠Exercise 18.19 This exercise concerns well-behaved whileuty programs. Show the following:

(a) It is undecidable whether a given whileuty program is well behaved.

(b) Each syntactically well-behaved whileuty program is well behaved.

(c) For each well-behaved whileuty program, there exists an equivalent syntactically
well-behaved whileuty program.

Exercise 18.20 Write a whileuty program that constructs the relation ŝucc fromR< in the proof
of Theorem 18.3.3.

♠Exercise 18.21 [AV91b] Prove that any query on a unary relation computed by a whilenew
or whileuty program in polynomial space is in FO. (For the purpose of this exercise, define the
space used in a program execution as the maximum number of occurrences of constants in some
instance produced in the execution of the program.) Note that, in particular, even cannot be
computed in polynomial space in these languages.

♠Exercise 18.22 [AV91a] Consider the following extension of datalog¬¬ with the ability to
create new values. The rules are of the same form as datalog¬¬ rules, but with a different
semantics than the active domain semantics used for datalog¬¬. The new semantics is the
following. When rules are fired, all variables that occur in heads of rules but do not occur
positively in the body are assigned distinct new values, not present in the input database,
program, or any of the other relations in the program. A distinct value is assigned for each
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applicable valuation of the variables positively bound in the body in each firing. This is similar
to the new construct in whilenew. For example, one firing of the rule

R(x, y, α)← P(x, y)

has the same effect as the R := new(P ) instruction in whilenew. The resulting extension of
datalog¬¬ is denoted datalog¬¬new. The well-behaved datalog¬¬new programs are those that never
produce new values in the answer. Sketch a proof that well-behaved datalog¬¬new programs ex-
press all queries.


