
P A R T

C Constraints

As presented so far, there is little in the relational model that can be used to indicate
the intended meaning of tuples stored in a database. Although this provides database

designers and users with great flexibility, the inability to represent so-called meta-data
can also lead to a variety of problems. For example, it is hard to develop understandable
and usable schemas for complex database applications because of the somewhat simplistic
nature of the model. Furthermore, the lack of information on the properties of the stored
data often leads to inefficient implementations.

In response to these problems, a framework for adding semantics to the relational
model has been developed. This is accomplished by incorporating integrity constraints
(i.e., properties that are supposed to be satisfied by all instances of a database schema).
Some of the early research included the study of integrity constraints expressed by essen-
tially arbitrary sentences from first-order logic. However, feasibility considerations have
led to the study of more restricted classes of constraints, usually called dependencies. A
simple example is that of key dependency. For instance, we expect that in a relation con-
cerning personnel data, the Social Security number will serve as a “key” (i.e., the Social
Security number will uniquely identify tuples in the relation).

The fundamental motivation for the study of dependencies is to incorporate more se-
mantics into the relational model. An alternative is to develop more sophisticated data-
base models with richer constructs than the relational model, yielding schemas conveying
explicitly more of the semantics associated with the data. One family of such models,
called semantic data models, and its relationship to the relational model are discussed in
Chapter 11. A more general family, called object-oriented database models, is studied in
Chapter 21 of Part F.

With the development of new models, dependency theory has become somewhat out
of fashion. However, we believe that the results presented in this part remain important.
The functional, join, and inclusion dependencies are fundamental to the understanding
of the more elaborate constructs found in modern database models. Their study in the
simple context of the relational model captures the essence of such constructs. Some results
presented in this part have also found applications to various fields, such as deductive
databases. Finally, some of the techniques that are developed are interesting in their own
right and highlight in a nutshell key aspects of computer science.
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158 Constraints

A broad theory of dependencies has been developed for the relational model.1 Several
natural kinds of dependencies were introduced, often using an ad hoc notation, and stud-
ied in depth. Subsequently, a framework stemming primarily from mathematical logic was
developed that provides a unifying view of virtually all of them. The single most important
theoretical question examined in connection with dependencies is that of (logical) implica-
tion: Given a set F of dependencies and a dependency σ , if an instance satisfies F does it
necessarily satisfy σ as well? The implication problem turns out to be a key technical issue
in most situations in which dependencies are used. It has been studied primarily from two
perspectives. One is focused on developing algorithms for determining implication and on
studying the complexity of this problem for different classes of dependencies. The other
perspective is focused on the development of inference rules that can be used to construct
proofs that a dependency is implied.

Dependencies are intimately related to several other important topics in various data-
base contexts. A driving force for the study of dependencies has been schema design. The
goal is to select the most appropriate schema for a particular database application. Un-
der one approach, a schema from a semantic data model is transformed into a relational
schema with dependencies. An alternative approach starts with a “universal relation” and
applies decomposition to create new relations that satisfy certain normal forms. Other ar-
eas of theoretical research have been to study query optimization techniques in the presence
of dependencies and the interaction between dependencies and data restructuring. Results
include the use of dependencies to optimize conjunctive queries and the study of how de-
pendencies are carried from a database to a view.

All of the dependencies studied in this part are static, in the sense that they describe
properties that should be satisfied by all possible instances of a schema regardless of the
past and future. Research has also been performed in connection with dynamic dependen-
cies, which describe properties of the evolution of the database; these are considered briefly
in Chapter 22.

The first chapter of this part presents the practical motivations for the incorporation of
dependencies into the relational model and then examines the basic themes of dependency
theory in connection with two fundamental kinds of dependencies (namely, functional and
join dependencies). This chapter also introduces the chase, an elegant tool for optimizing
conjunctive queries in the presence of dependencies and for determining implication for
dependencies. The second chapter introduces inclusion dependencies. Although positive
results are obtained for these dependencies considered in isolation, several negative results
hold when they are considered with functional dependencies. The third chapter presents a
unifying framework for dependencies based on a perspective from mathematical logic. The
final chapter of this part considers dependency theory in connection with several issues of
database design.

1 To keep theoreticians in business, some say.



8 Functional and Join
Dependency

Alice: Your model reduces the most interesting information to something flat and
boring.

Vittorio: You’re right, and this causes a lot of problems.
Sergio: Designing the schema for a complex application is tough, and it is easy to

make mistakes when updating a database.
Riccardo: Also, the system knows so little about the data that it is hard to obtain

good performance.
Alice: Are you telling me that the model is bad?

Vittorio: No, wait, we are going to fix it!

This chapter begins with an informal discussion that introduces some simple dependen-
cies and illustrates the primary motivations for their development and study. The two

following sections of the chapter are devoted to two of the simple kinds of dependencies;
and the final section introduces the chase, an important tool for analyzing these dependen-
cies and their effect on queries.

Many of the early dependencies introduced in the literature use the named (as op-
posed to unnamed) perspective on tuples and relations. Dependency theory was one of the
main reasons for adopting this perspective in theoretical investigations. This is because de-
pendencies concern the semantics of data, and attribute names carry more semantics than
column numbers. The general view of dependencies based on logic, which is considered
in Chapter 10, uses the column-number perspective, but a special subcase (called typed)
retains the spirit of the attribute-name perspective.

8.1 Motivation

Consider the database shown in Fig. 8.1. Although the schema itself makes no restrictions
on properties of data that might be stored, the intended application for the schema may
involve several such restrictions. For example, we may know that there is only one director
associated with each movie title, and that in Showings, only one movie title is associated
with a given theater-screen pair.1 Such properties are called functional dependencies (fd’s)
because the values of some attributes of a tuple uniquely or functionally determine the
values of other attributes of that tuple. In the syntax to be developed in this chapter, the

1 Gone are the days of seeing two movies for the price of one!
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160 Functional and Join Dependency

Movies Title Director Actor

The Birds Hitchcock Hedren

The Birds Hitchcock Taylor

Bladerunner Scott Hannah

Apocalypse Now Coppola Brando

Showings Theater Screen Title Snack

Rex 1 The Birds coffee

Rex 1 The Birds popcorn

Rex 2 Bladerunner coffee

Rex 2 Bladerunner popcorn

Le Champo 1 The Birds tea

Le Champo 1 The Birds popcorn

Cinoche 1 The Birds Coke

Cinoche 1 The Birds wine

Cinoche 2 Bladerunner Coke

Cinoche 2 Bladerunner wine

Action Christine 1 The Birds tea

Action Christine 1 The Birds popcorn

Figure 8.1: Sample database illustrating simple dependencies

dependency in the Movies relation is written as

Movies : Title→ Director

and that of the Showings relation is written as

Showings : Theater Screen→ Title.

Technically, there are sets of attributes on the left- and right-hand sides of the arrow, but
we continue with the convention of omitting set braces when understood from the context.

When there is no confusion from the context, a dependency R : X→ Y is simply
denoted X→ Y . A relation I satisfies a functional dependency X→ Y if for each pair
s, t of tuples in I ,

πX(s)= πX(t) implies πY(s)= πY(t).

An important notion in dependency theory is implication. One can observe that any
relation satisfying the dependency
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(a) Title→ Director

also has to satisfy the dependency

(b) Title,Actor → Director.

We will say that dependency (a) implies dependency (b).
A key dependency is an fd X→ U , where U is the full set of attributes of the relation.

It turns out that dependency (b) is equivalent to the key dependency Title, Actor → Title,
Director, Actor.

A second fundamental kind of dependency is illustrated by the relation Showings. A
tuple (th, sc, ti, sn) is in Showings if theater th is showing movie ti on screen sc and if
theater th offers snack sn. Intuitively, one would expect a certain independence between the
Screen-Title attributes, on the one hand, and the Snack attribute, on the other, for a given
value of Theater. For example, because (Cinoche, 1, The Birds, Coke) and (Cinoche, 2,
Bladerunner, wine) are in Showings, we also expect (Cinoche, 1, The Birds, wine) and
(Cinoche, 2, Bladerunner, Coke) to be present. More precisely, if a relation I has this
property, then

I = πTheater,Screen,Title(I ) �� πTheater,Snack(I ).

This is a simple example of a join dependency (jd) which is formally expressed by

Showings : ��[{Theater, Screen,Title}, {Theater, Snacks}].

In general, a jd may involve more than two attribute sets. Multivalued dependency
(mvd) is the special case of jd’s that have at most two attribute sets. Due to their naturalness,
mvd’s were introduced before jd’s and have several interesting properties, which makes
them worth studying on their own.

As will be seen later in this chapter, the fact that the fd Title→ Director is satisfied by
the Movies relation implies that the jd

��[{Title,Director}, {Title,Actor}]

is also satisfied. We will also study such interaction between fd’s and jd’s.
So far we have considered dependencies that apply to individual relations. Typically

these dependencies are used in the context of a database schema, in which case one has
to specify the relation concerned by each dependency. We will also consider a third fun-
damental kind of dependency, called inclusion dependency (ind) and also referred to as
“referential constraint.” In the example, we might expect that each title currently being
shown (i.e., occurring in the Showings relation) is the title of a movie (i.e., also occurs in
the Movies relation). This is denoted by

Showings[Title]⊆Movies[Title].
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In general, ind’s may involve sequences of attributes on both sides. Inclusion dependencies
will be studied in depth in Chapter 9.

Data dependencies such as the ones just presented provide a formal mechanism for
expressing properties expected from the stored data. If the database is known to satisfy a
set of dependencies, this information can be used to (1) improve schema design, (2) protect
data by preventing certain erroneous updates, and (3) improve performance. These aspects
are considered in turn next.

Schema Design and Update Anomalies

The task of designing the schema in a large database application is far from being trivial,
so the designer has to receive support from the system. Dependencies are used to provide
information about the semantics of the application so that the system may help the user
choose, among all possible schemas, the most appropriate one.

There are various ways in which a schema may not be appropriate. The relations
Movies and Showings illustrate the most prominent kinds of problems associated with fd’s
and jd’s:

Incomplete information: Suppose that one is to insert the title of a new movie and its direc-
tor without knowing yet any actor of the movie. This turns out to be impossible with
the foregoing schema, and it is an insertion anomaly. An analogue for deletion, a dele-
tion anomaly, occurs if actor Marlon Brando is no longer associated with the movie
“Apocalypse Now.” Then the tuple 〈Apocalypse Now, Coppola, Brando〉 should be
deleted from the database. But this has the additional effect of deleting the association
between the movie “Apocalypse Now” and the director Coppola from the database,
information that may still be valid.

Redundancy: The fact that Coke can be found at the Cinoche is recorded many times.
Furthermore, suppose that the management of the Cinoche decided to sell Pepsi in-
stead of Coke. It is not sufficient to modify the tuple 〈Cinoche, 1, The Birds, Coke〉
to 〈Cinoche, 1, The Birds, Pepsi〉 because this would lead to a violation of the jd. We
have to modify several tuples. This is a modification anomaly. Insertion and deletion
anomalies are also caused by redundancy.

Thus because of a bad choice for the schema, updates can lead to loss of information,
inconsistency in the data, and more difficulties in writing correct updates. These problems
can be prevented by choosing a more appropriate schema. In the example, the relation
Movies should be “decomposed” into two relations M-Director[Title, Director] and M-
Actor[Title, Actor], where M-Director satisfies the fd Title → Director. Similarly, the
relation Showings should be replaced by two relations ST-Showings[Theater, Screen, Title]
and S-Showings[Theater, Snack], where ST-Showings satisfies the fd Theater, Screen →
Title. This approach to schema design is explored in Chapter 11.

Data Integrity

Data dependencies also serve as a filter on proposed updates in a natural fashion: If a
database is expected to satisfy a dependency σ and a proposed update would lead to the
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violation of σ , then the update is rejected. In fact, the system supports transactions. During
a transaction, the database can be in an inconsistent state; but at the end of a transaction,
the system checks the integrity of the database. If dependencies are violated, the whole
transaction is rejected (aborted); otherwise it is accepted (validated).

Efficient Implementation and Query Optimization

It is natural to expect that knowledge of structural properties of the stored data be useful in
improving the performances of a system for a particular application.

At the physical level, the satisfaction of dependencies leads to a variety of alternatives
for storage and access structures. For example, satisfaction of an fd or jd implies that a
relation can be physically stored in decomposed form. In addition, satisfaction of a key
dependency can be used to reduce indexing space.

A particularly striking theoretical development in dependency theory provides a
method for optimizing conjunctive queries in the presence of a large class of dependencies.
As a simple example, consider the query

ans(d, a)←Movies(t, d, a′),Movies(t, d ′, a),

which returns tuples 〈d, a〉, where actor a acted in a movie directed by d. A naive imple-
mentation of this query will require a join. Because Movies satisfies Title→ Director, this
query can be simplified to

ans(d, a)←Movies(t, d, a),

which can be evaluated without a join. Whenever the pattern of tuples {〈t, d, a′〉, 〈t, d ′, a〉}
is found in relation Movies, it must be the case that d = d ′, so one may as well use just the
pattern {〈t, d, a〉}, yielding the simplified query. This technique for query optimization is
based on the chase and is considered in the last section of this chapter.

8.2 Functional and Key Dependencies

Functional dependencies are the most prominent form of dependency, and several elegant
results have been developed for them. Key dependencies are a special case of functional
dependencies. These are the dependencies perhaps most universally supported by relational
systems and used in database applications. Many issues in dependency theory have nice
solutions in the context of functional dependencies, and these dependencies lie at the origin
of the decomposition approach to schema design.

To specify a class of dependencies, one must define the syntax and the semantics of
the dependencies of concern. This is done next for fd’s.

Definition 8.2.1 If U is a set of attributes, then a functional dependency (fd) over U is
an expression of the form X→ Y , where X, Y ⊆ U . A key dependency over U is an fd of
the form X→ U . A relation I over U satisfies X→ Y , denoted I |=X→ Y , if for each
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pair s, t of tuples in I , πX(s)= πX(t) implies πY(s)= πY(t). For a set F of fd’s, I satisfies
F, denoted I |=F, if I |= σ for each σ ∈F.

A functional dependency over a database schema R is an expression R : X→ Y ,
where R ∈ R and X→ Y is a dependency over sort(R). These are sometimes referred
to as tagged dependencies, because they are “tagged” by the relation that they apply to.
The notion of satisfaction of fd’s by instances over R is defined in the obvious way. In the
remainder of this chapter, we consider only relational schemas. All can be extended easily
to database schemas.

The following simple property provides the basis for the decomposition approach to
schema design. Intuitively, it says that if a certain fd holds in a relation, one can store
instead of the relation two projections of it, without loss of information. More precisely,
the original relation can be reconstructed by joining the projections. Such joins have been
termed “lossless joins” and will be discussed in some depth in Section 11.2.

Proposition 8.2.2 Let I be an instance over U that satisfies X→ Y and Z = U −XY .
Then I = πXY(I ) �� πXZ(I).

Proof The inclusion I ⊆ πXY(I ) �� πXZ(I) holds for all instances I . For the opposite
inclusion, let r be a tuple in the join. Then there are tuples s, t ∈ I such that πXY(r) =
πXY(s) and πXZ(r)= πXZ(t). Because πX(r)= πX(t), and I |=X→ Y , πY(r)= πY(t).
It follows that r = t , so r is in I .

Logical Implication

In general, we may know that a set F of fd’s is satisfied by an instance. A natural question
is, What other fd’s are necessarily satisfied by this instance? This is captured by the
following definition.

Definition 8.2.3 Let F and H be sets of fd’s over an attribute set U . Then F (logically)
implies H, denoted F |=U H or simply F |= H, if U is understood from the context, if for
all relations I over U , I |= F implies I |= H. Two sets H,F are (logically) equivalent,
denoted H ≡F, if H |=F and F |= H.

Example 8.2.4 Consider the set F1 = {A→ C,B → C,CD→ E} of fd’s over {A,B,

C,D,E}. Then2 a simple argument allows to show that F1 |= AD→ E. In addition, F1 |=
CDE → C. In fact, ∅ |= CDE → C (where ∅ is the empty set of fd’s).

Although the definition just presented focuses on fd’s, this definition will be used in
connection with other classes of dependencies studied here as well.

2 We generally omit set braces from singleton sets of fd’s.
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The fd closure of a set F of fd’s over an attribute set U , denoted F∗,U or simply F∗ if
U is understood from the context, is the set

{X→ Y |XY ⊆ U and F |=X→ Y }.

It is easily verified that for any set F of fd’s over U and any sets Y ⊆ X ⊆ U , X→
Y ∈ F∗,U . This implies that the closure of a set of fd’s depends on the underlying set of
attributes. It also implies that F∗,U has size greater than 2|U |. (It is bounded by 22|U | by
definition.) Other properties of fd closures are considered in Exercise 8.3.

Determining Implication for fd’s Is Linear Time

One of the key issues in dependency theory is the development of algorithms for testing
logical implication. Although a set F of fd’s implies an exponential (in terms of the number
of attributes present in the underlying schema) number of fd’s, it is possible to test whether
F implies an fd X→ Y in time that is linear in the size of F and X→ Y (i.e., the space
needed to write them).

A central concept used in this algorithm is the fd closure of a set of attributes. Given
a set F of fd’s over U and attribute set X ⊆ U , the fd closure of X under F, denoted
(X,F)∗,U or simply X∗ if F and U are understood, is the set {A ∈ U | F |= X→ A}. It
turns out that this set is independent of the underlying attribute set U (see Exercise 8.6).

Example 8.2.5 Recall the set F1 of fd’s from Example 8.2.4. Then A∗ = AC, (AB)∗ =
ABC, and (AD)∗ = ACDE. The family of subsets X of U such that X∗ =X is {∅, C,D,E,

AC,BC,CE,DE,ABC,ACE,ADE,BCE, BDE,CDE,ABCE,ACDE, BCDE,ABCDE}.

The following is easily verified (see Exercise 8.4):

Lemma 8.2.6 Let F be a set of fd’s and X→ Y an fd. Then F |=X→ Y iff Y ⊆X∗.

Thus testing whether F |= X→ Y can be accomplished by computing X∗. The fol-
lowing algorithm can be used to compute this set.

Algorithm 8.2.7

Input: a set F of fd’s and a set X of attributes.

Output: the closure X∗ of X under F.

1. unused :=F;
2. closure :=X;
3. repeat until no further change:

if W → Z ∈ unused and W ⊆ closure then
i. unused := unused − {W → Z};
ii. closure := closure ∪ Z

4. output closure.
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Proposition 8.2.8 On input F and X, Algorithm 8.2.7 computes (X,F)∗.

Proof Let U be a set of attributes containing the attributes occurring in F or X, and let
result be the output of the algorithm. Using properties established in Exercise 8.5, an easy
induction shows that result ⊆X∗.

For the opposite inclusion, note first that for attribute sets Y,Z, if Y ⊆ Z then Y ∗ ⊆ Z∗.
Because X ⊆ result, it now suffices to show that result∗ ⊆ result. It is enough to show that
if A ∈ U − result, then F �|= result → A. To show this, we construct an instance I over U
such that I |=F but I �|= result → A for A ∈ U − result. Let I = {s, t}, where πresult(s)=
πresult(t) and s(A) �= t (A) for each A ∈ U − result. (Observe that this uses the fact that the
domain has at least two elements.) Note that, by construction, for each fd W → Z ∈F, if
W ⊆ result then Z ⊆ result. It easily follows that I |=F. Furthermore, for A ∈ U − result,
s(A) �= t (A), so I �|= result → A. Thus F �|= result → A, and result∗ ⊆ result.

The algorithm provides the means for checking whether a set of dependencies implies
a single dependency. To test implication of a set of dependencies, it suffices to test inde-
pendently the implication of each dependency in the set. In addition, one can check that
the preceding algorithm runs in time O(n2), where n is the length of F and X. As shown
in Exercise 8.7, this algorithm can be improved to linear time. The following summarizes
this development.

Theorem 8.2.9 Given a set F of fd’s and a single fd σ , determine whether F |= σ can
be decided in linear time.

Several interesting properties of fd-closure sets are considered in Exercises 8.11 and
8.12.

Axiomatization for fd’s

In addition to developing algorithms for determining logical implication, the second funda-
mental theme in dependency theory has been the development of inference rules, which can
be used to generate symbolic proofs of logical implication. Although the inference rules do
not typically yield the most efficient mechanisms for deciding logical implication, in many
cases they capture concisely the essential properties of the dependencies under study. The
study of inference rules is especially intriguing because (as will be seen in the next section)
there are several classes of dependencies for which there is no finite set of inference rules
that characterizes logical implication.

Inference rules and algorithms for testing implication provide alternative approaches
to showing logical implication between dependencies. In general, the existence of a finite
set of inference rules for a class of dependencies is a stronger property than the existence
of an algorithm for testing implication. It will be shown in Chapter 9 that

• the existence of a finite set of inference rules for a class of dependencies implies the
existence of an algorithm for testing logical implication; and
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• there are dependencies for which there is no finite set of inference rules but for which
there is an algorithm to test logical implication.

We now present the inference rules for fd’s.

FD1: (reflexivity) If Y ⊆X, then X→ Y .

FD2: (augmentation) If X→ Y , then XZ→ YZ.

FD3: (transitivity) If X→ Y and Y → Z, then X→ Z.

The variables X, Y,Z range over sets of attributes. The first rule is sometimes called an
axiom because it is degenerate in the sense that no fd’s occur in the antecedent.

The inference rules are used to form proofs about logical implication between fd’s,
in a manner analogous to the proofs found in mathematical logic. It will be shown that
the resulting proof system is “sound” and “complete” for fd’s (two classical notions to be
recalled soon). Before formally presenting the notion of proof, we give an example.

Example 8.2.10 The following is a proof of AD→ E from the set F1 of fd’s of Exam-
ple 8.2.4.

σ1 : A→ C ∈F1,

σ2 : AD→ CD from σ1 using FD2,
σ3 : CD→ E ∈F1,

σ4 : AD→ E from σ2 and σ3 using FD3.

Let U be a set of attributes. A substitution for an inference rule ρ (relative to U ) is
a function that maps each variable appearing in ρ to a subset of U , such that each set
inclusion indicated in the antecedent of ρ is satisfied by the associated sets. Now let F be a
set of fd’s over U and σ an fd over U . A proof of σ from F using the set I = {FD1, FD2,
FD3} is a sequence of fd’s σ1, . . . , σn = σ (n≥ 1) such that for each i ∈ [1, n], either

(a) σi ∈F, or

(b) there is a substitution for some rule ρ ∈ I such that σi corresponds to the conse-
quent of ρ, and such that for each fd in the antecedent of ρ the corresponding fd
is in the set {σj | 1≤ j < i}.

The fd σ is provable from F using I (relative to U ), denoted F I* σ or F * σ if I is
understood from the context, if there is a proof of σ from F using I.

Let I be a set of inference rules. Then

I is sound for logical implication of fd’s if F I* σ implies F |= σ ,

I is complete for logical implication of fd’s if F |= σ implies F I* σ .

We will generalize these definitions to other dependencies and other sets of inference
rules.

In general, a finite sound and complete set of inference rules for a class C of depen-
dencies is called a (finite) axiomatization of C. In such a case, C is said to be (finitely)
axiomatizable.

We now state the following:
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Theorem 8.2.11 The set {FD1, FD2, FD3} is sound and complete for logical implica-
tion of fd’s.

Proof Suppose that F is a set of fd’s over an attribute set U . The proof of soundness
involves a straightforward induction on proofs σ1, . . . , σn from F, showing that F |= σi

for each i ∈ [1, n] (see Exercise 8.5).
For the proof of completeness, we show that F |= X→ Y implies F * X→ Y . As

a first step, we show that F * X→ X∗ using an induction based on Algorithm 8.2.7. In
particular, let closurei be the value of closure after i iterations of step 3 for some fixed
execution of that algorithm on input F and X. We set closure0 = X. Suppose inductively
that a proof σ1, . . . , σki of X→ closurei has been constructed. [The case for i = 0 follows
from FD1.] Suppose further that W → Z is chosen for the (i + 1)st iteration. It follows
that W ⊆ closurei and closurei+1 = closurei ∪Z. Extend the proof by adding the following
steps:

σki+1 = W → Z in F

σki+2 = closurei →W by FD1
σki+3 = closurei → Z by FD3
σki+4 = closurei → closurei+1 by FD2
σki+5 = X→ closurei+1 by FD3

At the completion of this construction we have a proof σ1, . . . , σn of X→ X∗. By
Lemma 8.2.6, Y ⊆X∗. Using FD1 and FD3, the proof can be extended to yield a proof of
X→ Y .

Other inference rules for fd’s are considered in Exercise 8.9.

Armstrong Relations

In the proof of Proposition 8.2.8, an instance I is created such that I |=F but I �|=X→ A.
Intuitively, this instance witnesses the fact that F �|= X→ A. This raises the following
natural question: Given a set F of fd’s over U , is there a single instance I that satisfies
F and that violates every fd not in F∗? It turns out that for each set of fd’s, there is such an
instance; these are called Armstrong relations.

Proposition 8.2.12 If F is a set of fd’s over U , then there is an instance I such that,
for each fd σ over U , I |= σ iff σ ∈F∗.

Crux Suppose first that F �|= ∅→ A for any A (i.e., ∅∗ = ∅). For each set X ⊆ U sat-
isfying X = X∗, choose an instance IX = {sX, tX} such that sX(A)= tX(A) iff A ∈ X. In
addition, choose these instances so that adom(IX) ∩ adom(IY )= ∅ for X �= Y . Then

∪{IX |X ⊂ U and X =X∗}

is an Armstrong relation for F.
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If ∅∗ �= ∅, then the instances IX should be modified so that πA(IX)= πA(IY ) for each
X, Y and A ∈ ∅∗.

In some applications, the domains of certain attributes may be finite (e.g., Sex con-
ventionally has two values, and Grade typically consists of a finite set of values). In such
cases, the construction of an Armstrong relation may not be possible. This is explored in
Exercise 8.13.

Armstrong relations can be used in practice to assist the user in specifying the fd’s for
a particular application. An interactive, iterative specification process starts with the user
specifying a first set of fd’s. The system then generates an Armstrong relation for the fd’s,
which violates all the fd’s not included in the specification. This serves as a worst-case
counterexample and may result in detecting additional fd’s whose satisfaction should be
required.

8.3 Join and Multivalued Dependencies

The second kind of simple dependency studied in this chapter is join dependency (jd),
which is intimately related to the join operator of the relational algebra. As mentioned in
Section 8.1, a basic motivation for join dependency stems from its usefulness in connection
with relation decomposition. This section also discusses multivalued dependency (mvd), an
important special case of join dependency that was historically the first to be introduced.

The central results and tools for studying jd’s are different from those for fd’s. It has
been shown that there is no sound and complete set of inference rules for jd’s analogous
to those for fd’s. (An axiomatization for a much larger family of dependencies will be
presented in Chapter 10.) In addition, as shown in the following section, logical implication
for jd’s is decidable. The complexity of implication is polynomial for a fixed database
schema but becomes np-hard if the schema is considered part of the input. (An exact
characterization of the complexity remains open.)

The following section also presents an interesting correspondence between mvd’s and
acyclic join dependencies (i.e., those based on joins that are acyclic in the sense introduced
in Chapter 6).

A major focus of the current section is on mvd’s; this is because of several positive
results that hold for them, including axiomatizability of fd’s and mvd’s considered together.

Join Dependency and Decomposition

Before defining join dependency, we recall the definition of natural join. For attribute set
U , sets X1, . . . , Xn ⊆ U , and instances Ij over Xj for j ∈ [1, n], the (natural) join of the
Ij ’s is

��nj=1 {Ij} = {s over ∪Xj | πXj
(s) ∈ Ij for each j ∈ [1, n]}.

A join dependency is satisfied by an instance I if it is equal to the join of some of its
projections.
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Definition 8.3.1 A join dependency (jd) over attribute set U is an expression of the form
��[X1, . . . , Xn], where X1, . . . , Xn ⊆ U and ∪n

i=1Xi = U . A relation I over U satisfies
��[X1, . . . , Xn] if I = ��nj=1 {πXj

(I )}.

A jd σ is n-ary if the number of attribute sets involved in σ is n. As discussed earlier,
the relation Showings of Fig. 8.1 satisfies the 2-ary jd

��[{Theater, Screen,Title}, {Theater, Snacks}].

The 2-ary jd’s are also called multivalued dependencies (mvd’s). These are often denoted
in a style reminiscent of fd’s.

Definition 8.3.2 If U is a set of attributes, then a multivalued dependency (mvd) over
U is an expression of the form X→→ Y , where X, Y ⊆ U . A relation I over U satisfies
X→→ Y if I |= ��[XY,X(U − Y )].

In the preceding definition, it would be equivalent to write ��[XY, (U − Y )]; we
choose the foregoing form to emphasize the importance of X. For instance, the jd

��[{Theater, Screen,Title}, {Theater, Snack}]

can be written as an mvd using

Theater →→ Screen,Title, or equivalently, Theater →→ Snack.

Exercise 8.16 explores the original definition of satisfaction of an mvd.
Figure 8.2 shows a relation schema SDT and an instance that satisfies a 3-ary jd. This

relation focuses on snacks, distributors, and theaters. We assume for this example that a
tuple (s, d, p, t) is in SDT if the conjunction of the following predicates is true:

P1(s, d, p): Snack s is supplied by distributor d at price p.

P2(d, t): Theater t is a customer of distributor d.

P3(s, t): Snack s is bought by theater t .

Under these assumptions, each instance of SDT must satisfy the jd:

��[{Snack,Distributor,Price}, {Distributor,Theater}, {Snack,Theater}].

For example, this holds for the instance in Fig. 8.2. Note that if tuple 〈coffee, Smart, 2.35,
Cinoche〉 were removed, then the instance would no longer satisfy the jd because 〈coffee,
Smart, 2.35〉, 〈coffee, Cinoche〉, and 〈Smart, Cinoche〉 would remain in the appropriate
projections. We also expect the instances of SDT to satisfy Snack, Distributor → Price.

It can be argued that schema SDT with the aforementioned constraint is unnatural
in the following sense. Intuitively, if we choose such a schema, the presence of a tuple
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SDT Snack Distributor Price Theater

coffee Smart 2.35 Rex

coffee Smart 2.35 Le Champo

coffee Smart 2.35 Cinoche

coffee Leclerc 2.60 Cinoche

wine Smart 0.80 Rex

wine Smart 0.80 Cinoche

popcorn Leclerc 5.60 Cinoche

Figure 8.2: Illustration of join dependency

〈s, d, p, t〉 seems to indicate that t buys s from d. If we wish to record just the information
about who buys what, who sells what, and who sells to whom, a more appropriate schema
would consist of three relations SD[Snack, Distributor, Price], ST [Snack, Theater], and
DT [Distributor, Theater] corresponding to the three sets of attributes involved in the
preceding jd. The jd then guarantees that no information is lost in the decomposition
because the original relation can be reconstructed by joining the projections.

Join Dependencies and Functional Dependencies

The interaction of fd’s and jd’s is important in the area of schema design and user interfaces
to the relational model. Although this is explored in more depth in Chapter 11, we present
here one of the first results on the interaction of the two kinds of dependencies.

Proposition 8.3.3 Let U be a set of attributes, {X, Y,Z} be a partition of U , and F be
a set of fd’s over U . Then F |= ��[XY,XZ] iff either F |=X→ Y or F |=X→ Z.

Crux Sufficiency follows immediately from Proposition 8.2.2. For necessity, suppose that
F does not imply either of the fd’s. Then Y − X∗ �= ∅ and Z − X∗ �= ∅, say C ∈ Y − X∗
and C′ ∈ Z −X∗. Consider the two-element instance I = {u, v} where, u(A)= v(A)= 0
if A is in X∗ and u(A)= 0, v(A)= 1 otherwise. Clearly, I satisfies F and one can verify
that πXY(I ) �� πXZ(I) contains a tuple w with w(C)= 0 and w(C′)= 1. Thus w is not in
I , so I violates ��[XY,XZ].

Axiomatizations

As will be seen later (Theorem 8.4.12), there is a decision procedure for jd’s in isolation,
and for jd’s and fd’s considered together. Here we consider axiomatizations, first for jd’s in
isolation and then for fd’s and mvd’s taken together.

We state first the following result without proof.

Theorem 8.3.4 There is no axiomatization for the family of jd’s.
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In contrast, there is an axiomatization for the class of fd’s and multivalued dependen-
cies. Note first that implication for fd’s is independent of the underlying set of attributes
(i.e., if F ∪ {σ } is a set of fd’s over U and V ⊇ U , then F |= σ relative to U iff F |= σ rel-
ative to V ; see Exercise 8.6). An important difference between fd’s and mvd’s is that this is
not the case for mvd’s. Thus the inference rules for mvd’s must be used in connection with
a fixed underlying set of attributes, and a variable (denoted U ) referring to this set is used
in one of the rules.

The following lists the four rules for mvd’s alone and an additional pair of rules needed
when fd’s are incorporated.

MVD0: (complementation) If X→→ Y , then X→→ (U − Y ).

MVD1: (reflexivity) If Y ⊆X, then X→→ Y .

MVD2: (augmentation) If X→→ Y , then XZ→→ YZ.

MVD3: (transitivity) If X→→ Y and Y →→ Z, then X→→ (Z − Y ).

FMVD1: (conversion) If X→ Y , then X→→ Y .

FMVD2: (interaction) If X→→ Y and XY → Z, then X→ (Z − Y ).

Theorem 8.3.5 The set {FD1, FD2, FD3, MVD0, MVD1, MVD2, MVD3, FMVD1,
FMVD2} is sound and complete for logical implication of fd’s and mvd’s considered
together.

Crux Soundness is easily verified. For completeness, let an underlying set U of attributes
be fixed, and assume that F �* σ , where σ =X→ Y or σ =X→→ Y .

The dependency set of X is dep(X)= {Y ⊆ U |F *X→→ Y }. One first shows that

1. dep(X) is a Boolean algebra of sets for U .

That is, it contains U and is closed under intersection, union, and difference (see Exer-
cise 8.17). In addition,

2. for each A ∈X+, {A} ∈ dep(X),

where X+ denotes {A ∈ U |F *X→ A}.
A dependency basis of X is a family {W1, . . . ,Wm} ⊆ dep(X) such that (1) ∪n

i=1Wi =
U ; (2) Wi �= ∅ for i ∈ [1, n]; (3) Wi ∩Wj = ∅ for i, j ∈ [1, n] with i �= j ; and (4) if
W ∈ dep(X), W �= ∅, and W ⊆Wi for some i ∈ [1, n], then W =Wi. One then proves
that

3. there exists a unique dependency basis of X.

Now construct an instance I over U that contains all tuples t satisfying the following
conditions:

(a) t (A)= 0 for each A ∈X+.

(b) If Wi is in the dependency basis and Wi �= {A} for each A ∈X+, then t (B)= 0
for all B ∈Wi or t (B)= 1 for all B ∈Wi.

It can be shown that I |=F but I �|= σ (see Exercise 8.17).



8.4 The Chase 173

This easily implies the following (see Exercise 8.18):

Corollary 8.3.6 The set {MVD0, MVD1, MVD2, MVD3} is sound and complete for
logical implication of mvd’s considered alone.

8.4 The Chase

This section presents the chase, a remarkable tool for reasoning about dependencies that
highlights a strong connection between dependencies and tableau queries. The discussion
here is cast in terms of fd’s and jd’s, but as will be seen in Chapter 10, the chase generalizes
naturally to a broader class of dependencies. At the end of this section, we explore impor-
tant applications of the chase technique. We show how it can also be used to determine
logical implication between sets of dependencies and to optimize conjunctive queries.

The following example illustrates an intriguing connection between dependencies and
tableau queries.

Example 8.4.1 Consider the tableau query (T , t) shown in Fig. 8.3(a). Suppose the
query is applied only to instances I satisfying some set F of fd’s and jd’s. The chase is
based on the following simple idea. If ν is a valuation embedding T into an instance I

satisfying F, ν(T ) must satisfy F. Valuations that do not satisfy F are therefore of no use.
The chase is a procedure that eliminates the useless valuations by changing (T , t) itself so
that T , viewed as an instance, satisfies F. We will show that the tableau query resulting
from the chase is then equivalent to the original on instances satisfying F. As we shall see,
this can be used to optimize queries and test implication of dependencies.

Let us return to the example. Suppose first that F = {B → D}. Suppose (T , t) is
applied to an instance I satisfying F. In each valuation embedding T into I , it must be
the case that z and z′ are mapped to the same constant. Thus in this context one might as
well replace T by the tableau where z= z′. This transformation is called “applying the fd
B→D” to (T , t). It is easy to see that the resulting tableau query is in fact equivalent to
the identity, because T contains an entire row of distinguished variables.

Consider next an example involving both fd’s and jd’s. Let F consist of the following
two dependencies over ABCD: the jd ��[AB,BCD] and the fd A→ C. In this example we
argue that for each I satisfying these dependencies, (T , t)(I )= I or, in other words, in the
context of input instances that satisfy the dependencies, the query (T , t) is equivalent to
the identity query ({t}, t).

Let I be an instance over ABCD satisfying the two dependencies. We first explain
why (T , t)(I ) = (T ′, t)(I ) for the tableau query (T ′, t) of Fig. 8.3(b). It is clear that
(T ′, t)(I )⊆ (T , t)(I ), because T ′ is a superset of T . For the opposite inclusion, suppose
that ν is a valuation for T with ν(T ) ⊆ I . Then, in particular, both ν(〈w, x, y, z′〉) and
ν(〈w′, x, y′, z〉) are in I . Because I |= ��[AB,BCD], it follows that ν(〈w, x, y′, z〉) ∈ I .
Thus ν(T ′)⊆ I and ν(t) ∈ (T ′, t)(I ). The transformation from (T , t) to (T ′, t) is termed
“applying the jd ��[AB,BCD],” because T ′ is the result of adding a member of πAB(T ) ��
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Figure 8.3: Illustration of the chase

πBCD(T ) to T . We shall see that, by repeated applications of a jd, one can eventually
“force” the tableau to satisfy the jd.

The tableau T ′′ of Fig. 8.3(c) is the result of chasing (T ′, t) with the fd A→ C (i.e.,
replacing all occurrences of y′ by y). We now argue that (T ′, t)(I ) = (T ′′, t)(I ). First,
by Theorem 6.2.3, (T ′, t)(I )⊇ (T ′′, t)(I ) because there is a homomorphism from (T ′, t)
to (T ′′, t). For the opposite inclusion, suppose now that ν(T ′) ⊆ I . This implies that ν

embeds the first tuple of T ′′ into I . In addition, because ν(〈w, x, y, z′〉) and ν(〈w, x, y′, z〉)
are in I and I |= A→ C, it follows that ν(y) = ν(y′). Thus ν(〈w′, x, y, z〉) = ν(〈w′, x,
y′, z〉) ∈ I , and ν(〈w, x, y, z〉)= ν(〈w, x, y′, z〉) ∈ I , [i.e., ν embeds the second and third
tuples of T ′′ into I , such that ν(T ′′) ⊆ I ]. Note that (T ′′, t) is the result of identifying a
pair of variables that caused a violation of A→ C in T ′. We will see that by repeated
applications of an fd, one can eventually “force” a tableau to satisfy the fd. Note that
in this case, chasing with respect to A→ C has no effect before chasing with respect to
��[AB,BCD].

Finally, note that by the Homomorphism Theorem 6.2.3 of Chapter 6, (T ′′, t) ≡
({t}, t). It follows, then, that for all instances I that satisfy {A→ C, ��[AB,BCD]}, (T , t)

and ({t}, t) yield the same answer.

Defining the Chase

As seen in Example 8.4.1, the chase relates to equivalence of queries over a family of
instances satisfying certain dependencies. For a family F of instances over R, we say
that q1 is contained in q2 relative to F , denoted q1 ⊆F q2, if q1(I) ⊆ q2(I) for each
instance I in F . We are particularly interested in families F that are defined by a set F of
dependencies (in the current context, fd’s and jd’s). Let F be a set of (functional and join)
dependencies over R. The satisfaction family of F, denoted sat(R, F) or simply sat(F) if
R is understood from the context, is the family

sat(F)= {I over R | I |=F}.
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Query q1 is contained in q2 relative to F, denoted q1 ⊆F q2, if q1 ⊆sat(F) q2. Equivalence
relative to a family of instances (≡F) and to a set of dependencies (≡F) are defined
similarly.

The chase is a general technique that can be used, given a set of dependencies F,
to transform a tableau query q into a query q ′ such that q ≡F q ′. The chase is defined as a
nondeterministic procedure based on the successive application of individual dependencies
from F, but as will be seen this process is “Church-Rosser” in the sense that the procedure
necessarily terminates with a unique end result. As a final step in this development, the
chase will be used to characterize equivalence of conjunctive queries with respect to a set
F of dependencies (≡F).

In the following, we let R be a fixed relation schema, and we focus on sets F of fd’s
and jd’s over R and tableau queries with no constants over R. The entire development can
be generalized to database schemas and conjunctive queries with constants (Exercise 8.27)
and to a considerably larger class of dependencies (Chapter 10).

For technical convenience, we assume that there is a total order ≤ on the set var. Let
R be a fixed relation schema and suppose that (T , t) is a tableau query over R. The chase
is based on the successive application of the following two rules:

fd rule: Let σ =X→ A be an fd over R, and let u, v ∈ T be such that πX(u)= πX(v) and
u(A) �= v(A). Let x be the lesser variable in {u(A), v(A)} under the ordering ≤, and
let y be the other one (i.e., {x, y} = {u(A), v(A)} and x < y). The result of applying
the fd σ to u, v in (T , t) is the tableau query (θ(T ), θ(t)), where θ is the substitution
that maps y to x and is the identity elsewhere.

jd rule: Let σ =��[X1, . . . , Xn] be a jd over R, let u be a free tuple over R not in T , and
suppose that u1, . . . , un ∈ T satisfy πXi

(ui)= πXi
(u) for i ∈ [1, n]. Then the result of

applying the jd σ to (u1, . . . , un) in (T , t) is the tableau query (T ∪ {u}, t).
Following the lead of Example 8.4.1, the following is easily verified (see Exer-

cise 8.24a).

Proposition 8.4.2 Suppose that F is a set of fd’s and jd’s over R, σ ∈ F, and q is a
tableau query over R. If q ′ is the result of applying σ to some tuples in q, then q ′ ≡F q.

A chasing sequence of (T , t) by F is a (possibly infinite) sequence

(T , t)= (T0, t0), . . . , (Ti, ti), . . .

such that for each i ≥ 0, (Ti+1, ti+1) (if defined) is the result of applying some dependency
in F to (Ti, ti). The sequence is terminal if it is finite and no dependency in F can be
applied to it. The last element of the terminal sequence is called its result. The notion
of satisfaction of a dependency is extended naturally to tableaux. The following is an
important property of terminal chasing sequences (Exercise 8.24b).

Lemma 8.4.3 Let (T ′, t ′) be the result of a terminal chasing sequence of (T , t) by F.
Then T ′, considered as an instance, satisfies F.
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Because the chasing rules do not introduce new variables, it turns out that the chase
procedure always terminates. The following is easily verified (Exercise 8.24c):

Lemma 8.4.4 Let (T , t) be a tableau query over R and F a set of fd’s and jd’s over R.
Then each chasing sequence of (T , t) by F is finite and is the initial subsequence of a
terminal chasing sequence.

An important question now is whether the results of different terminal chasing se-
quences are the same. This turns out to be the case. This property of chasing sequences is
called the Church-Rosser property. We provide the proof of the Church-Rosser property
for the chase at the end of this section (Theorem 8.4.18).

Because the Church-Rosser property holds, we can define without ambiguity the result
of chasing a tableau query by a set of fd’s and jd’s.

Definition 8.4.5 If (T , t) is a tableau query over R and F a set of fd’s and jd’s over R,
then the chase of (T , t) by F, denoted chase(T , t, F), is the result of some (any) terminal
chasing sequence of (T , t) by F.

From the previous discussion, chase(T , t, F) can be computed as follows. The depen-
dencies are picked in some arbitrary order and arbitrarily applied to the tableau. Applying
an fd to a tableau query q can be performed within time polynomial in the size of q. How-
ever, determining whether a jd can be applied to q is np-complete in the size of q. Thus the
best-known algorithm for computing the chase is exponential (see Exercise 8.25). However,
the complexity is polynomial if the schema is considered fixed.

Until now, besides the informal discussion in Section 8.1, the chase remains a purely
syntactic technique. We next state a result that shows that the chase is in fact determined
by the semantics of the dependencies in F and not just their syntax.

In the following proposition, recall that by definition, F ≡ F′ if F |= F′ and F′ |=
F. The proof, which we omit, uses the Church-Rosser property of the chase (see also
Exercise 8.26).

Proposition 8.4.6 Let F and F′ be sets of fd’s and jd’s over R, and let (T , t) be a
tableau query over R. If F ≡F′, then chase(T , t, F) and chase(T , t, F′) coincide.

We next consider several important uses of the chase that illustrate the power of this
technique.

Query Equivalence

We consider first the problem of checking the equivalence of tableau queries in the presence
of a set of fd’s and jd’s. This allows, for example, checking whether a tableau query can
be replaced by a simpler tableau query when the dependencies are satisfied. Suppose now
that (T ′, t ′) and (T ′′, t ′′) are two tableau queries and F a set of fd’s and jd’s such that
(T ′, t ′)≡F (T ′′, t ′′). From the preceding development (Proposition 8.4.2), it follows that
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chase(T ′, t ′, F)≡F (T ′, t ′)≡F (T ′′, t ′′)≡F chase(T ′′, t ′′, F).

We now show that, in fact, chase(T ′, t ′, F)≡ chase(T ′′, t ′′, F). Furthermore, this condi-
tion is sufficient as well as necessary.

To demonstrate this result, we first establish the following more general fact.

Theorem 8.4.7 Let F be a family of instances over relation schema R that is closed
under isomorphism, and let (T1, t1), (T2, t2), (T ′1, t

′
1), and (T ′2, t

′
2) be tableau queries over

R. Suppose further that for i = 1, 2,

(a) (T ′i , t
′
i)≡F (Ti, ti) and

(b) T ′i , considered as an instance, is in F .3

Then (T1, t1)⊆F (T2, t2) iff (T ′1, t
′
1)⊆ (T ′2, t

′
2).

Proof The if direction is immediate. For the only-if direction, suppose that (T1, t1)⊆F
(T2, t2). It suffices by the Homomorphism Theorem 6.2.3 to exhibit a homomorphism that
embeds (T ′2, t

′
2) into (T ′1, t

′
1). Because T ′1, considered as an instance, is in F ,

t ′1 ∈ (T ′1, t
′
1)(T

′
1)⇒ t ′1 ∈ (T1, t1)(T

′
1)⇒ t ′1 ∈ (T2, t2)(T

′
1)⇒ t ′1 ∈ (T ′2, t

′
2)(T

′
1).

It follows that there is a homomorphism h such that h(T ′2) ⊆ T ′1 and h(t ′2) = t ′1. Thus
(T ′1, t

′
1)⊆ (T ′2, t

′
2). This completes the proof.

Together with Lemma 8.4.3, this implies the following:

Theorem 8.4.8 Let (T1, t1) and (T2, t2) be tableau queries over R and F a set of fd’s
and jd’s over R. Then

1. (T1, t1)⊆F (T2, t2) iff chase(T1, t1, F)⊆ chase(T2, t2, F).

2. (T1, t1)≡F (T2, t2) iff chase(T1, t1, F)≡ chase(T2, t2, F).

Query Optimization

As suggested in Example 8.4.1, the chase can be used to optimize tableau queries in the
presence of dependencies such as fd’s and jd’s. Given a tableau query (T , t) and a set F of
fd’s and jd’s, chase(T , t, F) is equivalent to (T , t) on all instances satisfying F. A priori, it
is not clear that the new tableau is an improvement over the first. It turns out that the chase
using fd’s can never yield a more complicated tableau and, as shown in Example 8.4.1,
can yield a much simpler one. On the other hand, the chase using jd’s may yield a more
complicated tableau, although it may also produce a simpler one.

We start by looking at the effect on tableau minimization of the chase using fd’s.
In the following, we denote by min(T , t) the tableau resulting from the minimization of

3 More precisely, T ′ considered as an instance is in F means that some instance isomorphic to T ′ is
in F .
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the tableau (T , t) using the Homomorphism Theorem 6.2.3 for tableau queries, and by
|min(T , t)| we mean the cardinality of the tableau of min(T , t).

Lemma 8.4.9 Let (T , t) be a tableau query and F a set of fd’s. Then |min(chase(T , t,

F))| ≤ |min(T , t)|.

Crux By the Church-Rosser property of the chase, the order of the dependencies used in
a chase sequence is irrelevant. Clearly it is sufficient to show that for each tableau query
(T ′, t ′) and σ ∈F, |min(chase(T ′, t ′, σ ))| ≤ |min(T ′, t ′)|. We can assume without loss of
generality that σ is of the form X→ A, where A is a single attribute.

Let (T ′′, t ′′) = chase(T ′, t ′, {X→ A}), and let θ be the chase homomorphism of a
chasing sequence for chase(T ′, t ′, {X→ A}), i.e., the homomorphism obtained by com-
posing the substitutions used in that chasing sequence (see the proof of Theorem 8.4.18).
We will use here the Church-Rosser property of the chase (Theorem 8.4.18) as well as a
related property stating that the homomorphism θ , like the result, is also the same for all
chase sequences (this follows from the proof of Theorem 8.4.18).

By Theorem 6.2.6, there is some S ⊆ T ′ such that (S, t ′) is a minimal tableau query
equivalent to (T ′, t ′); we shall use this as the representative of min(T ′, t ′). Let h be a
homomorphism such that h(T ′, t ′)= (S, t ′). Consider the mapping f on (T ′′, t ′′) defined
by f (θ(x))= θ(h(x)), where x is a variable in (T ′, t ′). If we show that f is well defined,
we are done. [If f is well defined, then f is a homomorphism from (T ′′, t ′′) to θ(S, t ′)=
(θ(S), t ′′), and so (T ′′, t ′′) ⊇ θ(S, t ′). On the other hand, the θ(S) ⊆ θ(T ′) = T ′′, and
so (T ′′, t ′′) ⊆ θ(S, t ′). Thus, (T ′′, t ′′) ≡ θ(S, t ′) = θ(min(T ′, t ′)), and so |min(T ′′, t ′′)| =
|min(θ(min(T ′, t ′)))| ≤ |θ(min(T ′, t ′))| ≤ |min(T ′, t ′)|.]

To see that f is well defined, suppose θ(x)= θ(y). We have to show that θ(h(x))=
θ(h(y)). Consider a terminal chasing sequence of (T ′, t ′) using X→ A, and (u1, v1), . . . ,

(un, vn) as the sequence of pairs of tuples used in the sequence, yielding the chase homo-
morphism θ . Consider the sequence (h(u1), h(v1)), . . . , (h(un), h(vn)). Clearly if X→ A

can be applied to (u, v), then it can be applied to (h(u), h(v)), unless h(u(A))= h(v(A)).
Let (h(ui1), h(vi1)), . . . , (h(uik), h(vik)) be the subsequence of these pairs for which X→
A can be applied. It can be easily verified that there is a chasing sequence of (h(T ′), t ′)
using X→ A that uses the pairs (h(ui1), h(vi1)), . . . , (h(uik), h(vik)), with chase homo-
morphism θ ′. Note that for all x′, y′, if θ(x′)= θ(y′) then θ ′(h(x′))= θ ′(h(y′)). In particu-
lar, θ ′(h(x))= θ ′(h(y)). Because h(T ′)⊆ T ′, θ ′ is the chase homomorphism of a chasing
sequence σ1, . . . , σk of (T ′, t ′). Let θ ′′ be the chase homomorphism formed from a termi-
nal chasing sequence that extends σ1, . . . , σk. Then θ ′′(h(x))= θ ′′(h(y)). Finally, by the
uniqueness of the chase homomorphism, θ ′′ = θ , and so θ(h(x))= θ(h(y)) as desired. This
concludes the proof.

It turns out that jd’s behave differently than fd’s with respect to minimization of
tableaux. The following shows that the chase using jd’s may yield simpler but also more
complicated tableaux.
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Figure 8.4: Minimization and the chase using jd’s

Example 8.4.10 Consider the tableau query (T , t) shown in Fig. 8.4(a) and the jd σ =��
[AB,BCD]. Clearly (T , t) is minimal, so |min(T , t)| = 2. Next consider chase(T , t, σ ). It
is easy to check that 〈w, x, y, z〉 ∈ chase(T , t, σ ), so chase(T , t, σ ) is equivalent to the
identity and

|min(chase(T , t, σ ))| = 1.

Next let (T ′, t ′) be the tableau query in Fig. 8.4(b) and σ =��[AB,CD]. Again (T ′, t ′) is
minimal. Now chase(T ′, t ′, σ ) is represented in Fig. 8.4(c) and is minimal. Thus

|min(chase(T ′, t ′, σ ))| = 4 > |min(T ′, t ′)|.

Despite the limitations illustrated by the preceding example, the chase in conjunction
with tableau minimization provides a powerful optimization technique that yields good
results in many cases. This is illustrated by the following example and by Exercise 8.28.

Example 8.4.11 Consider the SPJ expression

q = πAB(πBCD(R) �� πACD(R)) �� πAD(R),

where R is a relation with attributes ABCD. Suppose we wish to optimize the query on
databases satisfying the dependencies

F = {B→D,D→ C, ��[AB,ACD]}.

The tableau (T , t) corresponding to q is represented in Fig. 8.5(a). Note that (T , t)

is minimal. Next we chase (T , t) using the dependencies in F. The chase using the
fd’s in F does not change (T , t), which already satisfies them. The chase using the jd
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Figure 8.5: Optimization of SPJ expressions by tableau minimization and the chase

��[AB,ACD] yields the tableau (T ′, t ′) in Fig. 8.5(b). Now the fd’s can be applied to
(T ′, t ′) yielding the tableau (T ′′, t ′′) in Fig. 8.5(c). Finally (T ′′, t ′′) is minimized to
(T ′′′, t ′′′) in Fig. 8.5(d). Note that (T ′′′, t ′′′) satisfies F, so the chase can no longer be ap-
plied. The SPJ expression corresponding to (T ′′′, t ′′′) is πABD(πBCD(R) �� πACD(R)). Thus,
the optimization of q resulted in saving one join operation. Note that the new query is not
simply a subexpression of the original. In general, the shape of queries can be changed
radically by the foregoing procedure.

The Chase and Logical Implication

We consider a natural correspondence between dependency satisfaction and conjunctive
query containment. This correspondence uses tableaux to represent dependencies. We will
see that the chase provides an alternative point of view to dependency implication.

First consider a jd σ =��[X1, . . . , Xn]. It is immediate to see that an instance I

satisfies σ iff qσ(I )⊆ qid(I ), where

qσ = [X1] �� · · · �� [Xn]
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and qid is the identity query. Both qσ and qid are PSJR expressions. We can look at
alternative formalisms for expressing qσ and qid . For instance, the tableau query of σ is
(Tσ , t), where for some t1, . . . , tn,

• t is a free tuple over R with a distinct variable for each coordinate,

• Tσ = {t1, . . . , tn},
• πXi

(ti)= πXi
(t) for i ∈ [1, n], and

• the other coordinates of the ti’s hold distinct variables.

It is again easy to see that qσ = (Tσ , t), so I |= σ iff (Tσ , t)(I )⊆ ({t}, t)(I ).
For fd’s, the situation is only slightly more complicated. Consider an fd σ ′ =X→ A

over U . It is easy to see that I |= σ ′ iff (Tσ ′, tσ ′)(I )⊆ (Tσ ′, t
′
σ ′)(I ), where

X A (U − AX) X A (U − AX)

Tσ ′ u x v1 u x v1

u x′ v2 u x′ v2

tσ ′ x x′ t ′
σ ′ x x

where u, v1, v2 are vectors of distinct variables and x, x′ are distinct variables occurring in
none of these vectors. The tableau query of σ ′ is (Tσ ′, tσ ′).

Again observe that (Tσ ′, tσ ′), (Tσ , tσ ) can be expressed as PSJR expressions, so fd
satisfaction also reduces to containment of PSJR expressions. It will thus be natural to
look more generally at all dependencies expressed as containment of PSJR expressions.
In Chapter 10, we will consider the general class of algebraic dependencies based on
containment of these expressions.

Returning to the chase, we next use the tableau representation of dependencies to
obtain a characterization of logical implication (Exercise 8.29). This result is generalized
by Corollary 10.2.3.

Theorem 8.4.12 Let F and {σ } be sets of fd’s and jd’s over relation schema R, let
(Tσ , tσ ) be the tableau query of σ , and let T be the tableau in chase(Tσ , tσ , F). Then
F |= σ iff

(a) σ =X→ A and |πA(T )| = 1, that is, the projection over A of T is a singleton;
or

(b) σ = ��[X1, . . . , Xn] and tσ ∈ T .

This implies that determining logical implication for jd’s alone, and for fd’s and jd’s
taken together, is decidable. On the other hand, tableau techniques are also used to obtain
the following complexity results for logical implication of jd’s (see Exercise 8.30).
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Theorem 8.4.13

(a) Testing whether a jd and an fd imply a jd is np-complete.

(b) Testing whether a set of mvd’s implies a jd is np-hard.

Acyclic Join Dependencies

In Section 6.4, a special family of joins called acyclic was introduced and was shown to
enjoy a number of desirable properties. We show now a connection between those results,
join dependencies, and multivalued dependencies.

A jd ��[X1, . . . , Xn] is acyclic if the hypergraph corresponding to [X1, . . . , Xn] is
acyclic (as defined in Section 6.4).

Using the chase, we show here that a jd is acyclic iff it is equivalent to a set of mvd’s.
The discussion relies on the notation and techniques developed in the discussion of acyclic
joins in Section 6.4.

We shall use the following lemma.

Lemma 8.4.14 Let σ = ��X be a jd over U , and let X, Y ⊆ U be disjoint sets. Then the
following are equivalent:

(i) σ |=X→→ Y ;

(ii) there is no Xi ∈ X such that Xi ∩ Y �= ∅ and Xi ∩ (U −XY) �= ∅;

(iii) Y is a union of connected components of the hypergraph X|U−X.

Proof Let Z = U − XY . Let τ denote the mvd X→→ Y , and let (Tτ , tτ ) be the tableau
query corresponding to τ . Let Tτ = {tY , tZ}where tY [XY ]= tτ [XY ] and tZ[XZ]= tτ [XZ]
and distinct variables are used elsewhere in tY and tZ.

We show now that (i) implies (ii). By Theorem 8.4.12, tτ ∈ T = chase(Tτ , tτ , σ ). Let
Xi ∈ X. Suppose that t is a new tuple created by an application of σ during the computation
of T . Then t[Xi] agrees with t ′[Xi] for some already existing tuple. An induction implies
that tτ [Xi]= tY [Xi] or tτ [Xi]= tZ[Xi]. Because tY and tZ agree only on X, this implies
that Xi cannot intersect with both Y and Z.

That (ii) implies (iii) is immediate. To see that (iii) implies (i), consider an applica-
tion of the jd ��X on Tτ , where Xi ∈ X is associated with tY if Xi − X ⊆ Y , and Xi

is associated with tZ otherwise. This builds the tuple tτ , and so by Theorem 8.4.12, σ |=
X→→ Y .

We now have the following:

Theorem 8.4.15 A jd σ is acyclic iff there is a set F of mvd’s that is equivalent to σ .

Proof (only if) Suppose that σ =��X over U is acyclic. By Theorem 6.4.5, this implies
that the output of the GYO algorithm on X is empty. Let X1, . . . , Xn be an enumeration
of X in the order of an execution of the GYO algorithm. In particular, Xi is an ear of the
hypergraph formed by {Xi+1, . . . , Xn}.
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For each i ∈ [1, n − 1], let Pi = ∪j∈[1,i]Xj and Qi = ∪j∈[i+1,n]Xj . Let F = {[Pi ∩
Qi]→→Qi | i ∈ [1, n − 1]}. By Lemma 8.4.14 and the choice of sequence X1, . . . , Xn,
σ |= F. To show that F |= σ , we construct a chasing sequence of (Tσ , tσ ) using F that
yields tσ . This chase shall inductively produce a sequence t1, . . . , tn of tuples, such that
ti[Pi]= tσ [Pi] for i ∈ [1, n].

We begin by setting t1 to be the tuple of Tσ that corresponds to X1. Then t1[P1] =
tσ [P1] because P1 =X1. More generally, given ti with i ≥ 1, the mvd [Pi ∩Qi]→→Qi on
ti and the tuple corresponding to Xi+1 can be used to construct tuple ti+1 with the desired
property. The final tuple tn constructed by this process is tσ , and so F |= σ as desired.

(if) Suppose that σ =��X over U is equivalent to the set F of mvd’s but that σ is
not acyclic. From the definition of acyclic, this implies that there is some W ⊆ U such that
Y= X|W has no articulation pair. Without loss of generality we assume that Y is connected.

Let Y= {Y1, . . . , Ym}. Suppose that s1, . . . are the tuples produced by some chasing
sequence of (Tσ , tσ ). We argue by induction that for each k ≥ 1, sk[W ] ∈ πW(Tσ). Suppose
otherwise, and let sk be the first where this does not hold. Suppose that sk is the result of
applying an mvd X→→ Y in F. Without loss of generality we assume that X ∩ Y = ∅.
Let Z = U − XY . Because sk results from X→→ Y , there are two tuples s′ and s′′ either
in Tσ or already produced, such that sk[XY ] = s′[XY ] and sk[XZ] = s′′[XZ]. Because
sk is chosen to be least, there are tuples ti and tj in Tσ , which correspond to Xi and Xj ,
respectively, such that s′[W ]= ti[W ] and s′′[W ]= tj [W ].

Because ti and tj correspond to Xi and Xj , for each attribute A ∈ U we have ti[A]=
tj [A] iff A ∈Xi ∩Xj . Thus X ∩W ⊆Xi ∩Xj .

Because sk[W ] �= ti[W ], W − XZ �= ∅, and because sk[W ] �= tj [W ], W − XY �= ∅.
Now, by Lemma 8.4.14, because X→→ Y is implied by σ , there is no Xk ∈ X such
that Xk ∩ Y �= ∅ and Xk ∩ Z �= ∅. It follows that Y|W−X is disconnected. Finally, let
Y = Xi ∩W and Y ′ = Xj ∩W . Because X ∩W ⊆ Xi ∩ Xj , it follows that Y ∩ Y ′ is an
articulation set for Y, a contradiction.

We conclude with a complexity result about acyclic jd’s. The first part follows from
the proof of the preceding theorem and the fact that the GYO algorithm runs in polynomial
time. The second part, stated without proof, is an interesting converse of the first part.

Proposition 8.4.16

(a) There is a ptime algorithm that, given an acyclic jd σ , produces a set of mvd’s
equivalent to σ .

(b) There is a ptime algorithm that, given a set F of mvd’s, finds a jd equivalent to
F or determines that there is none.

The Chase Is Church-Rosser

To conclude this section, we provide the proof that the results of all terminal chasing
sequences of a tableau query q by a set F of fd’s and jd’s are identical. To this end, we
first introduce tools to describe correspondences between the free tuples occurring in the
different elements of chasing sequences.
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Let (T , t)= (T0, t0), . . . , (Tn, tn) be a chasing sequence of (T , t) by F. Then for each
i ∈ [1, n], the chase homomorphism for step i, denoted θi, is an assignment with domain
var(Ti) defined as follows:

(a) If (Ti+1, ti+1) is the result of applying the fd rule to (Ti, ti), which replaces all
occurrences of variable y by variable x, then θi+1 is defined so that θi+1(y)= x

and θi+1 is the identity on var(Ti)− {y}.
(b) If (Ti+1, ti+1) is the result of applying the jd rule to (Ti, ti), then θi+1 is the

identity on var(Ti).

The chase homomorphism of this chasing sequence is θ = θ1 ◦ · · · ◦ θn. If w ∈ (T ∪ {t}),
then the tuple corresponding to w in (Ti, ti) is wi = θ1 ◦ · · · ◦ θi(w). It may arise that
ui = vi for distinct tuples u, v in T . Observe that θ1 ◦ · · · ◦ θi(T ) ⊆ Ti and that, because
of the jd rule, the inclusion may be strict.

We now have the following:

Lemma 8.4.17 Suppose that I |= F, ν is a substitution over var(T ), ν(T ) ⊆ I , and
(T0, t0), . . . , (Tn, tn) is a chasing sequence of (T , t) by F. Then

ν(wi)= ν(w) for each i ∈ [1, n] and each w ∈ (T ∪ {t}),

and ν(Ti)⊆ I for each i ∈ [1, n].

Crux Use an induction on the chasing sequence (Exercise 8.24d).

Observe that this also holds if I is a tableau over R that satisfies F. This is used in the
following result.

Theorem 8.4.18 Let (T , t) be a tableau query over R and F a set of fd’s and jd’s over
R. Then the results of all terminal chasing sequences of (T , t) by F are identical.

Proof Let (T ′, t ′) and (T ′′, t ′′) be the results of two terminal chasing sequences on (T , t)

using F, and let θ ′, θ ′′ be the chase homomorphisms of these chasing sequences. For each
tuple w ∈ T , let w′ denote the tuple of T ′ that corresponds to w, and similarly for w′′, T ′′.

By construction, θ ′′(T ) ⊆ T ′′ and θ ′′(t) = t ′′. Because T ′′ |= F and θ ′′(T ) ⊆ T ′′,
θ ′′(T ′) ⊆ T ′′ by Lemma 8.4.17 considering the chasing sequence leading to T ′. The
same argument shows that θ ′′(w′) = w′′ for each w in T and θ ′′(t ′) = t ′′. By symmetry,
θ ′(T ′′)⊆ T ′, θ ′(w′′)= w′ for each w in T and θ ′(t ′′)= t ′.

We next prove that

(*) θ ′′ is an isomorphism from (T ′, t ′) to (T ′′, t ′′).

Let w′′ be in T ′′ for some w in T . Then

θ ′ ◦ θ ′′(w′′)= θ ′′(θ ′(w′′))= θ ′′(w′)= w′′.



Bibliographic Notes 185

Observe that each variable x in var(T ′′) occurs in w′′, for some w in T . Thus θ ′ ◦ θ ′′ is the
identity over var(T ′′). We therefore have

θ ′ ◦ θ ′′(T ′′)= T ′′.

By symmetry, θ ′′ ◦ θ ′ is the identity over var(T ′) and

θ ′′ ◦ θ ′(T ′)= T ′.

Thus |T ′′| = |T ′|. Because θ ′′(T ′) ⊆ T ′′, θ ′′(T ′) = T ′′ and θ ′′ is an isomorphism from
(T ′, t ′) to (T ′′, t ′′), so (*) holds.

To conclude, we prove that

(**) θ ′′ is the identity over var(T ′).

We first show that for each pair x, y of variables occurring in T ,

(†) θ ′′(x)= θ ′′(y) iff θ ′(x)= θ ′(y).

Suppose that θ ′′(x) = θ ′′(y). Then for some tuples u, v ∈ T and attributes A,B, we
have u(A) = x, v(B) = y and u′′(A) = θ ′′(x) = θ ′′(y) = v′′(B). Next θ ′(x) = u′(A) and
θ ′(y) = v′(B). Because θ ′ is an isomorphism from (T ′′, t ′′) to (T ′, t ′) and θ ′(u′′) =
u′, θ ′(v′′) = v′, it follows that u′(A) = v′(B). Hence θ ′(x) = u′(A) = v′(B) = θ ′(y) as
desired. The if direction follows by symmetry.

Now let x ∈ var(T ′). To prove (**) and the theorem, it now suffices to show that
θ ′′(x)= x. Let

A′ = {y ∈ var(T ) | θ ′(y)= θ ′(x)},
A′′ = {y ∈ var(T ) | θ ′′(y)= θ ′′(x)}.

First (†) implies that A′ = A′′. Furthermore, an induction on the chasing sequence
for (T ′, t ′) shows that for each z ∈A′, θ ′(z) is the least (under the ordering on var) ele-
ment of A′, and similarly for (T ′′, t ′′). Thus θ ′ and θ ′′ map all elements of A′ and A′′ to
the same variable z. Because x ∈ var(T ′), it follows that z = x so, in particular, θ ′(x)=
θ ′′(x)= x.
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Exercises

Exercise 8.1 Describe the set of fd’s, mvd’s, and jd’s that are tautologies (i.e., dependencies
that are satisfied by all instances) for a relation schema R.
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Exercise 8.2 Let F1 be as in Example 8.2.4. Prove that F1 |= AD→ E and F1 |= CDE → C.

Exercise 8.3 Let U be a set of attributes, and let F,H be sets of dependencies over U . Show
that

(a) F ⊆F∗.
(b) (F∗)∗ =F∗.
(c) If H ⊆F, then H∗ ⊆F∗.

State and prove analogous results for fd closures of attribute sets.

Exercise 8.4 Prove Lemma 8.2.6.

Exercise 8.5 Let U be a set of attributes and F a set of fd’s over U . Prove the soundness of
FD1, FD2, FD3 and show that

If F *X→ Y and F *X→ Z, then F *X→ YZ.

Exercise 8.6 Let F be a set of fd’s over U .

(a) Suppose that X ⊆ U and U ⊆ V . Show that (X,F)∗,U = (X,F)∗,V . Hint: Use the
proof of Proposition 8.2.8.

(b) Suppose that XY ⊆ U , and U ⊆ V . Show that F |=U X→ Y iff F |=V X→ Y .

♠Exercise 8.7 [BB79] Describe how to improve the efficiency of Algorithm 8.2.7 to linear time.
Hint: For each unused fd W → Z in F, record the number attributes of W not yet in closure.
To do this efficiently, maintain a list for each attribute A of those unused fd’s of F for which A

occurs in the left-hand side.

Exercise 8.8 Give a proof of AB → F from F = {AB → C,A→ D,CD→ EF } using
{FD1, FD2, FD3}.

Exercise 8.9 Prove or disprove the soundness of the following rules:

FD4: (pseudo-transitivity) If X→ Y and YW → Z, then XW → Z.

FD5: (union) If X→ Y and X→ Z, then X→ YZ.

FD6: (decomposition) If X→ YZ, then X→ Y .

MVD4: (pseudo-transitivity) If X→→ Y and YW →→ Z, then XW →→ Z − Y .

MVD5: (union) If X→→ Y and X→→ Z, then X→→ YZ.

MVD6: (decomposition) If X→→ Y and X→→ Z, then X→→ Y ∩ Z, X→→ Y − Z, and
X→→ Z − Y .

bad-FD1: If XW → Y and XY → Z, then X→ (Z −W).

bad-MVD1: If X→→ Y and Y →→ Z, then X→→ Z.

bad-FMVD1: If X→→ Y and XY → Z, then X→ Z.

(The use of the hint is optional.)

Exercise 8.10 Continuing with Exercise 8.9,

(a) [BFH77] Find a two-element subset of {FD1, FD2, FD3, FD4, FD5, FD6} that is
sound and complete for inferring logical implication of fd’s.
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(b) Prove that there is exactly one two-element subset of {FD1, FD2, FD3, FD4, FD5,
FD6} that is sound and complete for inferring logical implication of fd’s.

Exercise 8.11 [Arm74] Let U be a fixed set of attributes. An attribute set X ⊆ U is saturated
with respect to a set F of fd’s over U if X =X∗. The family of saturated sets of F with respect
to U is satset(F)= {X ⊆ U |X is saturated with respect to F}.

(a) Show that satset = satset(F) satisfies the following properties:

S1: U ∈ satset.
S2: If Y ∈ satset and Z ∈ satset, then Y ∩ Z ∈ satset.

� (b) Suppose that satset is a family of subsets of U satisfying properties (S1) and (S2).
Prove that satset = satset(H) for some set H of fd’s over U . Hint: Use H = {Y → Z|
for each X ∈ satset, if Y ⊆X then Z ⊆X}.

Exercise 8.12 Let F and H be sets of fd’s over U . Using the notation of Exercise 8.11,

(a) Show that satset(F ∪ H)= satset(F) ∩ satset(H).

(b) Show that satset(F∗ ∩ H∗) = satset(F) ∧ satset(H), where for families F,G, the
wedge of F and G is F ∧ G = {X ∩ Y |X ∈ F and Y ∈ G}.

(c) For V ⊆ U , define πVF = {X→ Y ∈F |XY ⊆ V }. For V ⊆ U characterize satset
(πV (F

∗)) (where this family is defined with respect to V ).

Exercise 8.13

(a) Exhibit a set F1 of fd’s over {A,B} such that each Armstrong relation for F has at
least three distinct values occurring in the A column. Exhibit a set F2 of fd’s over
{A,B,C} such that each Armstrong relation for F has at least four distinct values
occurring in the A column.

(b) [GH83, BDFS84] Let F be a set of fd’s over U . Recall the notion of saturated set
from Exercise 8.11. For an instance I over U , the agreement set of I is agset(I )=
{X ⊆ U | ∃ s, t ∈ I such that s(A)= t (A) iff A ∈ X}. For a family F of subsets of
U , the intersection closure of F is intclo(F) = {∩n

i=1Xi | n ≥ 0 and each Xi ∈ F}
(where the empty intersection is defined to be U ). Prove that I is an Armstrong
relation for F iff intclo(agset(I ))= satset(F).

Exercise 8.14 [Mai80] Let F be a set of fd’s over U , X→ Y ∈F, and let A be an attribute.
A is extraneous in X→ Y with respect to F if either

(a) (F − {X→ Y }) ∪ {X→ (Y − A)} |=X→ Y ; or

(b) (F − {X→ Y }) ∪ {(X − A)→ Y } |=X→ Y .

Develop an O(n2) algorithm that takes as input a set F of fd’s and produces as output a set
F′ ≡F, where F′ has no extraneous attributes.

Exercise 8.15 Show that there is no set F of jd’s and fd X→ A such that F |=X→ A. Hint:
Show that for any instance I there exists an instance I ′ such that I ⊆ I ′ and I ′ |= F. Then
choose I violating X→ A.

Exercise 8.16 [Fag77b, Zan76] This exercise refers to the original definition of mvd’s. Let U
be a set of attributes and X, Y ⊆ U . Given an instance I over U and a tuple x ∈ πX(I), the image
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of x on Y in I is the set imageY (x, I )= πY(σX=x(I )) of tuples over Y . Prove that I |=X→→ Y

iff

for each x ∈ πX(I) and each z ∈ imageZ(x, I ), imageY (x, I )= imageY (xz, I ),

where Z = U −XY and xz denotes the tuple w over XZ such that πX(w)= x and πZ(w)= z.

�Exercise 8.17 [BFH77] Complete the proof of Theorem 8.3.5. Hint: Of course, the inference
rules can be used when reasoning about I . The following claims are also useful:

Claim 1: If A ∈X+, then I |= ∅→ A.

Claim 2: If A,B ∈Wi for some i ∈ [1, n], then I |= A→ B.

Claim 3: For each i ∈ [1, n], I |= ∅→→Wi.

Exercise 8.18 Prove Corollary 8.3.6.

Exercise 8.19 [Kan91] Consider the following set of inference rules:

MVD7: X→→ U −X.

MVD8: If Y ∩ Z = ∅, X→→ Y , and Z→→W , then X→→W − Y .

FMVD3: If Y ∩ Z = ∅, X→→ Y , and Z→W , then X→ Y ∩W .

Prove that {MVD7, MVD2, MVD8} are sound and complete for inferring implication for
mvd’s, and that {FD1, FD2, FD3, MVD7, MVD2, MVD8, FMVD1, FMVD3} are sound and
complete for inferring implication for fd’s and mvd’s considered together.

Exercise 8.20 [Bee80] Let F be a set of fd’s and mvd’s, and let m(F)= {X→→ Y | X→→
Y ∈F} ∪ {X→→ A | A ∈ Y for some X→ Y ∈F}. Prove that

(a) F |=X→ Y implies m(F) |=X→→ Y ; and

(b) F |=X→→ Y iff m(F) |=X→→ Y .

Hint: For (b) do an induction on proofs using the inference rules.

Exercise 8.21 For sets F and H of dependencies over U , F implies H for two-element in-
stances, denoted F |=2 H, if for each instance I over U with |I | ≤ 2, I |=F implies I |= H.

(a) [SDPF81] Prove that if F ∪ {σ } is a set of fd’s and mvd’s, then F |=2 σ iff F |= σ .

(b) Prove that the equivalence of part (a) does not hold if jd’s are included.

(c) Exhibit a jd σ such that there is no set F of mvd’s with σ ≡F.

♠Exercise 8.22 [SDPF81] This exercise develops a close connection between fd’s and mvd’s,
on the one hand, and a fragment of propositional logic, on the other. Let U be a fixed set of
attributes. We view each attribute A ∈ U as a propositional variable. For the purposes of this
exercise, a truth assignment is a mapping ξ : U → {T , F } (where T denotes true and F denotes
false). Truth assignments are extended to mappings on subsets X of U by ξ(X)= ∧A∈Xξ(A). A
truth assignment ξ satisfies an fd X→ Y , denoted ξ |=X→ Y , if ξ(X)= T implies ξ(Y )= T .
It satisfies an mvd X→→ Y , denoted ξ |= X→→ Y , if ξ(X)= T implies that either ξ(Y )= T

or ξ(U − Y ) = T . Given a set F ∪ {σ } of fd’s and mvd’s, F implies σ in the propositional
calculus, denoted F |=prop σ , if for each truth assignment ξ , ξ |=F implies ξ |= σ . Prove that
for all sets F ∪ {σ } of fd’s and mvd’s, F |= σ iff F |=prop σ .
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�Exercise 8.23 [Bis80] Exhibit a set of inference rules for mvd’s that are sound and complete
in the context in which an underlying set of attributes is not fixed.

♠Exercise 8.24

(a) Prove Proposition 8.4.2.

(b) Prove Lemma 8.4.3.

(c) Prove Lemma 8.4.4. What is the maximum size attainable by the tableau in the result
of a terminal chasing sequence?

(d) Prove Lemma 8.4.17.

♠Exercise 8.25

(a) Describe a polynomial time algorithm for computing the chase of a tableau query by
F, assuming that F contains only fd’s.

(b) Show that the problem of deciding whether a jd can be applied to a tableau query is
np-complete if the schema is considered variable, and polynomial if the schema is
considered fixed. Hint: Use Exercise 6.16.

(c) Prove that it is np-hard, given a tableau query (T , t) and a set F of fd’s and jd’s, to
compute chase(T , t, F) (this assumes that the schema is part of the input and thus
not fixed).

(d) Describe an exponential time algorithm for computing the chase by a set of fd’s and
jd’s. (Again the schema is not considered fixed.)

Exercise 8.26 Prove Proposition 8.4.6. Hint: Rather than modifying the proof of Theo-
rem 8.4.18, prove as a lemma that if F |= σ , then chase(T , t, F)= chase(T , t, F ∪ {σ }).
Exercise 8.27

(a) Verify that the results concerning the chase generalize immediately to the context in
which database schemas as opposed to relation schemas are used.

(b) Describe how to generalize the chase to tableau in which constants occur, and state
and prove the results about the chase and tableau queries. Hint: If the chase procedure
attempts to equate two distinct constants (a situation not occurring before), we obtain
a particular new tableau, called Tfalse, which corresponds to the query producing an
empty result on all input instances.

Exercise 8.28 For each of the following relation schemas R, SPJ expressions q over R, and
dependencies F over R, simplify q knowing that it is applied only to instances over R satisfying
F. Use tableau minimization and the chase.

(a) sort(R) = ABC, q = πAC(πAB(σA=2(R) �� πBC(R)) �� πAB(σB=8(R) �� πBC(R)),
F = {A→ C,B→ C}

(b) sort(R)= ABCD, q = πBC(R) �� πABD(R), F = {B→→ CD, B→→D}
(c) sort(R)= ABCD, q = πABD(R) �� πAC(R), F = {A→ B,B→→ C}.

♠Exercise 8.29 Prove Theorem 8.4.12.

♠Exercise 8.30 Prove Theorem 8.4.13(a) [BV80a] and Theorem 8.4.13(b) [FT83].

Exercise 8.31 [MMS79] Describe an algorithm based on the chase for

(a) computing the closure of an attribute set X under a set F of fd’s and jd’s (where the
notion of closure is extended to include all fd’s implied by F); and
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(b) computing the dependency basis (see Section 8.3) of a set X of attributes under a set
F of fd’s and jd’s (where the notion of dependency basis is extended to include fd’s
in the natural manner).

Exercise 8.32 [GH86] Suppose that the underlying domain dom has a total order ≤. Let
U = {A1, . . . , An} be a set of attributes. For each X ⊆ U , define the partial order ≤X over the
set of tuples of X by t ≤X t ′ iff t (A) ≤ t ′(A) for each A ∈ X. A sort set dependency (SSD)
over U is an expression of the form s(X), where X ⊆ U . An instance I over U satisfies s(X),
denoted I |= s(X), if ≤X is a total order on πX(I).

(a) Show that the following set of inference rules is sound and complete for finite logical
implication between SSDs:

SSD1: If A is an attribute, then s(A).
SSD2: If s(X) and Y ⊆X, then s(Y ).
SSD3: If s(X), s(Y ) and s(X , Y ), then s(XY) [where X , Y denotes (X −
Y ) ∪ (Y −X), i.e., the symmetric difference of X and Y ].

(b) Exhibit a polynomial time algorithm for inferring logical implication between sets
of SSDs.

(c) Describe how SSDs might be used in connection with indexes.
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Vittorio: Fd’s and jd’s give some structure to relations.
Alice: But there are no connections between them.

Sergio: Making connections is the next step . . .

Riccardo: . . . with some unexpected consequences.

The story of inclusion dependencies starts in a manner similar to that for functional
dependencies: Implication is decidable (although here it is pspace-complete), and

there is a simple set of inference rules that is sound and complete. But the story becomes
much more intriguing when functional and inclusion dependencies are taken together.
First, the notion of logical implication will have to be refined because the behavior of
these dependencies taken together is different depending on whether infinite instances are
permitted. Second, both notions of logical implication are nonrecursive. And third, it can
be proven in a formal sense that no “finite” axiomatization exists for either notion of logical
implication of the dependencies taken together. At the end of this chapter, two restricted
classes of inclusion dependencies are discussed. These are significant because they arise in
modeling certain natural relationships such as those encountered in semantic data models.
Positive results have been obtained for inclusion dependencies from these restricted classes
considered with fd’s and other dependencies.

Unlike fd’s or jd’s, a single inclusion dependency may refer to more than one relation.
Also unlike fd’s and jd’s, inclusion dependencies are “untyped” in the sense that they
may call for the comparison of values from columns (of the same or different relations)
that are labeled by different attributes. A final important difference from fd’s and jd’s is
that inclusion dependencies are “embedded.” Speaking intuitively, to satisfy an inclusion
dependency the presence of one tuple in an instance may call for the presence of another
tuple, of which only some coordinate values are determined by the dependency and the first
tuple. These and other differences will be discussed further in Chapter 10.

9.1 Inclusion Dependency in Isolation

To accommodate the fact that inclusion dependencies permit the comparison of values from
different columns of one or more relations, we introduce the following notation. Let R be a
relation schema and X = A1, . . . , An a sequence of attributes (possibly with repeats) from
R. For an instance I of R, the projection of I onto the sequence X, denoted I [X], is the
n-ary relation {〈t (A1), . . . , t (An)〉 | t ∈ I }.

The syntax and semantics of inclusion dependencies is now given by the following:

192
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Definition 9.1.1 Let R be a relational schema. An inclusion dependency (ind) over R
is an expression of the form σ = R[A1, . . . , Am]⊆ S[B1, . . . , Bm], where

(a) R, S are (possibly identical) relation names in R,

(b) A1, . . . , Am is a sequence of distinct attributes of sort(R), and

(c) B1, . . . , Bm is a sequence of distinct attributes of sort(S).

An instance I of R satisfies σ , denoted I |= σ , if

I(R)[A1, . . . , Am]⊆ I(S)[B1, . . . , Bm].

Satisfaction of a set of ind’s is defined in the natural manner.

To illustrate this definition, we recall an example from the previous chapter.

Example 9.1.2 There are two relations: Movies with attributes Title, Director, Actor and
Showings with Theater, Screen, Title, Snack; and we have an ind

Showings[Title]⊆Movies[Title].

The generalization of ind’s to permit repeated attributes on the left-or right-hand side
is considered in Exercise 9.4.

The notion of logical implication between sets of ind’s is defined in analogy with that
for fd’s. (This will be refined later when fd’s and ind’s are considered together.)

Rules for Inferring ind Implication

The following set of inference rules will be shown sound and complete for inferring logical
implication between sets of ind’s. The variables X, Y , and Z range over sequences of
distinct attributes; and R, S, and T range over relation names.

IND1: (reflexivity) R[X]⊆ R[X].

IND2: (projection and permutation) If R[A1, . . . , Am]⊆ S[B1, . . . , Bm], then R[Ai1,

. . . , Aik]⊆ S[Bi1, . . . , Bik] for each sequence i1, . . . , ik of distinct integers in
{1, . . . , m}.

IND3: (transitivity) If R[X]⊆ S[Y ] and S[Y ]⊆ T [Z], then R[X]⊆ T [Z].

The notions of proof and of provability (denoted *) using these rules are defined in
analogy with that for fd’s.

Theorem 9.1.3 The set {IND1, IND2, IND3} is sound and complete for logical impli-
cation of ind’s.

Proof Soundness of the rules is easily verified. For completeness, let F be a set of ind’s
over database schema R = {R1, . . . , Rn}, and let σ = Ra[A1, . . . , Am]⊆ Rb[B1, . . . , Bm]
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be an ind over R such that F |= σ . We construct an instance I of R and use it to demonstrate
that F * σ .

To begin, let s′ be the tuple over Ra such that s′(Ai)= i for i ∈ [1,m] and s′(B)= 0
otherwise. Set I(Ra)= {s′} and I(Rj)= ∅ for j �= a. We now apply the following rule to I
until it can no longer be applied.

(∗)

If Ri[C1, . . . , Ck]⊆ Rj [D1, . . . , Dk] ∈F and t ∈ I(Ri), then add

u to I(Rj), where u(Dl)= t (Cl) for l ∈ [1, k] and u(D)= 0 for D

�∈ {D1, . . . , Dk}.

Application of this rule will surely terminate, because all tuples are constructed from
a set of at most m+ 1 values. Clearly the result of applying this rule until termination is
unique, so let J be this result.

Remark 9.1.4 This construction is reminiscent of the chase for join dependencies. It
differs because the ind’s may be embedded. Intuitively, an ind may not specify all the
entries of the tuples we are adding. In the preceding rule (∗), the same value (0) is always
used for tuple entries that are otherwise unspecified.

It is easily seen that J |=F. Because F |= σ , we have J |= σ . To conclude the proof,
we show the following:

(∗∗)

If for some Rj in R, u ∈ J(Rj), integer q, and distinct attributes

C1, . . . , Cq in sort(Rj), u(Cp) > 0 for p ∈ [1, q], then

F * Ra[Au(C1), . . . , Au(Cq)]⊆ Rj [C1, . . . , Cq].

Suppose that (∗∗) holds. Let s′′ be a tuple of J(Rb) such that s′′[B1, . . . , Bm] =
s′[A1, . . . , Am]. (Such a tuple exists because J |= σ .) Use (∗∗) with Rj = Rb, q = m,
C1, . . . , Cq = B1, . . . , Bm.

To demonstrate (∗∗), we show inductively that it holds for all tuples of J by considering
them in the order in which they were inserted. The claim holds for s in J(Ra) by IND1.
Suppose now that

• I′ is the instance obtained after k applications of the rule for some k ≥ 0;

• the claim holds for all tuples in I′; and

• u is added to Rj by the next application of rule (∗), due to the ind Ri[C1, . . . , Ck]⊆
Rj [D1, . . . , Dk] ∈F and tuple t ∈ I′(Ri).

Now let {E1, . . . , Eq} be a set of distinct attributes in sort(Rj) with u(Ep) > 0 for p ∈
[1, q]. By the construction of u in (*), {E1, . . . , Eq} ⊆ {D1, . . . , Dk}. Choose the mapping
ρ such that Dρ(p) = Ep for p ∈ [1, q]. Because Ri[C1, . . . , Ck] ⊆ Rj [D1, . . . , Dk] ∈ F,
IND2 yields

F * Ri[Cρ(1), . . . , Cρ(q)]⊆ Rj [E1, . . . , Eq].
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By the inductive assumption,

F * Ra[At(Cρ(1)), . . . , At(Cρ(q))]⊆ Ri[Cρ(1), . . . , Cρ(q)].

Thus, by IND3,

F * Ra[At(Cρ(1)), . . . , At(Cρ(q))]⊆ Rj [E1, . . . , Eq].

Finally, observe that for each p, t (Cρ(p))= u(Dρ(p))= u(Ep), so

F * Ra[Au(E1), . . . , Au(Eq)]⊆ Rj [E1, . . . , Eq].

Deciding Logical Implication for ind’s

The proof of Theorem 9.1.3 yields a decision procedure for determining logical implication
between ind’s. To see this, we use the following result:

Proposition 9.1.5 Let F be a set of ind’s over R and Ra[A1, . . . , Am]⊆ Rb[B1, . . . ,

Bm]. Then F |= Ra[A1, . . . , Am] ⊆ Rb[B1, . . . , Bm] iff there is a sequence Ri1[ �C1], . . . ,
Rik[ �Ck] such that

(a) Rij ∈ R for j ∈ [1, k];

(b) �Cj is a sequence of m distinct attributes in sort(Rij ) for j ∈ [1, k];

(c) Ri1[ �C1]= Ra[A1, . . . , Am];

(d) Rik[ �Ck]= Rb[B1, . . . , Bm];

(e) Rij [ �Cj ]⊆ Rij+1[ �Cj+1] can be obtained from an ind in F by one application of
rule IND2, for j ∈ [1, (k − 1)].

Crux Use the instance J constructed in the proof of Theorem 9.1.3. Working backward
from the tuple s′′ in J(Rb), a chain of relation-tuple pairs (Rij , sj ) can be constructed so
that each of 1, . . . , m occurs exactly once in sj , and sj+1 is inserted into I as a result of sj
and IND2.

Based on this, it is straightforward to verify that the following algorithm determines
logical implication between ind’s. Note that only ind’s of arity m are considered in the
algorithm.

Algorithm 9.1.6

Input: A set F of ind’s over R and ind Ra[A1, . . . , Am]⊆ Rb[B1, . . . , Bm].

Output: Determine whether F |= Ra[A1, . . . , Am]⊆ Rb[B1, . . . , Bm].

Procedure: Build a set E of expressions of the form Ri[C1, . . . , Cm] as follows:
1. E := {Ra(A1, . . . , Am)}.
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2. Repeat until Rb[B1, . . . , Bm] ∈ E or no change possible:
If Ri[C1, . . . , Cm] ∈ E and

Ri[C1, . . . , Cm]⊆ Rj [D1, . . . , Dm]

can be derived from an ind of F by one application of IND2, then insert
Rj [D1, . . . , Dm] into E .

3. If Rb[B1, . . . , Bm] ∈ E then return yes; else return no.

As presented, the preceding algorithm is nondeterministic and might therefore take
more than polynomial time. The following result shows that this is indeed likely for any
algorithm for deciding implication between ind’s.

Theorem 9.1.7 Deciding logical implication for ind’s is pspace-complete.

Crux Algorithm 9.1.6 can be used to develop a nondeterministic polynomial space pro-
cedure for deciding logical implication between ind’s. By Savitch’s theorem (which states
that pspace = npspace), this can be transformed into a deterministic algorithm that runs in
polynomial space. To show that the problem is pspace-hard, we describe a reduction from
the problem of linear space acceptance.

A (Turing) machine is linear bounded if on each input of size n, the machine does not
use more that n tape cells. The problem is the following:

Linear Space Acceptance (LSA) problem

Input: The description of a linear bounded machine M and an input word x;

Output: yes iff M accepts x.

The heart of the proof is, given an instance (M, x) of the LSA problem, to construct a
set F of ind’s and an ind σ such that F |= σ iff x is accepted by M .

Let M = (K, H,K, s, h) be a Turing machine with states K , alphabet H, transition
relation K, start state s, and accepting state h; and let x = x1 . . . xn ∈ H∗ have length n.

Configurations of M are viewed as elements of H∗KH+ with length n+ 1, where the
placement of the state indicates the head position (the state is listed immediately left of
the scanned letter). Observe that transitions can be described by expressions of the form
α1, α2, α3 → β1, β2, β3 with α1, . . . , β3 in (K ∪ H). For instance, the transition

“if reading b in state p, then overwrite with c and move left”

corresponds to a, p, b→ p, a, c for each a in H. Let χ be the set of all such expressions
corresponding to transitions of M .

The initial configuration is sx. The final configuration is h� bn for some particular letter
� b, iff M accepts x.

The ind’s of F are defined over a single relation R. The attributes of R are {Ai,j | i ∈
(K ∪H), j ∈ {1, 2, . . . , n+ 1}} . The intuition here is that the attribute Ap,j corresponds to
the statement that the j th symbol in a given configuration is p. To simplify the presentation,
attribute Aa,k is simply denoted by the pair (a, k).



9.2 Finite versus Infinite Implication 197

The ind σ is

R[(s, 1), (x1, 2), . . . , (xn, n+ 1)]⊆ R[(h, 1), (� b, 2), . . . , (� b, n+ 1)].

The ind’s in F correspond to valid moves of M . In particular, for each j ∈ [1, n− 1], F
includes all ind’s of the form

R[(α1, j), (α2, j + 1), (α3, j + 2), �A ]⊆ R[(β1, j), (β2, j + 1), (β3, j + 2), �A ],

where α1, α2, α3 → β1, β2, β3 is in χ , and �A is an arbitrary fixed sequence that lists all
of the attributes in H × {1, . . . , j − 1, j + 3, . . . , n + 1}. Thus each ind in F has arity
3+ (n− 2)|H|, and |F| ≤ n|K|.

Although the choice of �A permits the introduction of many ind’s, observe that the
construction is still polynomial in the size of the linear space automaton problem (M, x).
Using Proposition 9.1.5, it is now straightforward to verify that F |= σ iff M has an
accepting computation of x.

Although the general problem of deciding implication for ind’s is pspace-complete,
naturally arising special cases of the problem have polynomial time solutions. This
includes the family of ind’s that are at most k-ary (ones in which the sequences of at-
tributes have length at most some fixed k) and ind’s that have the form R[ �A ]⊆ S[ �A ] (see
Exercise 9.10). The latter case arises in examples such as Grad − Stud[Name,Major]⊆
Student[Name,Major]. This theme is also examined at the end of this chapter.

9.2 Finite versus Infinite Implication

We now turn to the interaction between ind’s and fd’s, which leads to three interesting
phenomena. The first of these requires a closer look at the notion of logical implication.

Consider the notion of logical implication used until now: F logically implies σ if for
all relation (or database) instances I, I |= F implies I |= σ . Although this notion is close
to the corresponding notion of mathematical logic, it is different in a crucial way: In the
context of databases considered until now, only finite instances are considered. From the
point of view of logic, the study of logical implication conducted so far lies within finite
model theory.

It is also interesting to consider logical implication in the traditional mathematical
logic framework in which infinite database instances are permitted. As will be seen shortly,
when fd’s or ind’s are considered separately, permitting infinite instances has no impact on
logical implication. However, when fd’s and ind’s are taken together, the two flavors of
logical implication do not coincide.

The notion of infinite relation and database instances is defined in the natural manner.
An unrestricted relation (database) instance is a relation (database) instance that is either
finite or infinite. Based on this, we now redefine “unrestricted implication” to permit
infinite instances, and we define “finite logical implication” for the case in which only
finite instances are considered.
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R A B R A B

1 0 1 1
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Figure 9.1: Instances used for distinguishing |=fin and |=unr

Definition 9.2.1 A set F of dependencies over R implies without restriction a depen-
dency σ , denoted F |=unr σ , if for each unrestricted instance I of R, I |=F implies I |= σ .
A set F of dependencies over R finitely implies a dependency σ , denoted F |=fin σ , if for
each (finite) instance I of R, I |=F implies I |= σ .

If finite and unrestricted implication coincide, or if the kind of implication is under-
stood from the context, then we may use |= rather than |=fin or |=unr. This is what we
implicitly did so far by using |= in place of |=fin.

Of course, if F |=unr σ , then F |=fin σ . The following shows that the converse need
not hold:

Theorem 9.2.2

(a) There is a set F of fd’s and ind’s and an ind σ such that F |=fin σ but F �|=unr σ .

(b) There is a set F of fd’s and ind’s and an fd σ such that F |=fin σ but F �|=unr σ .

Proof For part (a), let R be binary with attributes A,B; let F = {A→ B,R[A]⊆ R[B]};
and let σ be R[B]⊆ R[A]. To see that F |=fin σ , let I be a finite instance of R that satisfies
F. Because I |= A→ B, |πA(I)| ≥ |πB(I)| and because I |= R[A] ⊆ R[B], |πB(I)| ≥
|πA(I)|. It follows that |πA(I)| = |πB(I)|. Because I is finite and πA(I)⊆ πB(I), it fol-
lows that πB(I)⊆ πA(I) and I |= R[B]⊆ R[A].

On the other hand, the instance shown in Fig. 9.1(a) demonstrates that F �|=unr σ .
For part (b), let F be as before, and let σ be the fd B→ A. As before, if I |=F, then

|πA(I)| = |πB(I)|. Because I |= A→ B, each tuple in I has a distinct A-value. Thus the
number of B-values occurring in I equals the number of tuples in I . Because I is finite,
this implies that I |= B → A. Thus F |=fin σ . On the other hand, the instance shown in
Fig. 9.1(b) demonstrates that F �|=unr σ .

It is now natural to reconsider implication for fd’s, jd’s, and inds taken separately
and in combinations. Are unrestricted and finite implication different in these cases? The
answer is given by the following:
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Theorem 9.2.3 Unrestricted and finite implication coincide for fd’s and jd’s considered
separately or together and for ind’s considered alone.

Proof Unrestricted implication implies finite implication by definition. For fd’s and jd’s
taken separately or together, Theorem 8.4.12 on the relationship between chasing and
logical implication can be used to obtain the opposite implication. For ind’s, Theorem 9.1.3
shows that finite implication and provability by the ind inference rules are equivalent. It
is easily verified that these rules are also sound for unrestricted implication. Thus finite
implication implies unrestricted implication for ind’s as well.

The notion of finite versus unrestricted implication will be revisited in Chapter 10,
where dependencies are recast into a logic-based formalism.

Implication Is Undecidable for fd’s + ind’s

As will be detailed in Chapter 10, fd’s and ind’s (and most other relational dependencies)
can be represented as sentences in first-order logic. By Gödel’s Completeness Theorem
implication is recursively enumerable for first-order logic. It follows that unrestricted im-
plication is r.e. for fd’s and ind’s considered together. On the other hand, finite implication
for fd’s and ind’s taken together is co-r.e. This follows from the fact that there is an effec-
tive enumeration of all finite instances over a fixed schema; if F �|=fin σ , then a witness of
this fact will eventually be found. When unrestricted and finite implication coincide, this
pair of observations is sufficient to imply decidability of implication; this is not the case
for fd’s and ind’s.

The Word Problem for (Finite) Monoids

The proof that (finite) implication for fd’s and ind’s taken together is undecidable uses a
reduction from the word problem for monoids, which we discuss next.

A monoid is a set with an associative binary operation ◦ defined on it and an identity
element ε. Let H be a finite alphabet and H∗ the free monoid generated by H (i.e., the
set of finite words with letters in H with the concatenation operation). Let E = {αi = βi |
i ∈ [1..n]} be a finite set of equalities, and let e be an additional equality α = β, where
αi, βi, α, β ∈ H∗. Then E (finitely) implies e, denoted E |=unr e (E |=fin e), if for each
(finite) monoid M and homomorphism h : H∗ →M , if h(αi)= h(βi) for each i ∈ [1..n],
then h(α) = h(β). The word problem for (finite) monoids is to decide, given E and e,
whether E |=unr e (E |=fin e). Both the word problem for monoids and the word problem
for finite monoids are undecidable.

Using this, we have the following:

Theorem 9.2.4 Unrestricted and finite implication for fd’s and ind’s considered together
are undecidable. In particular, let F range over sets of fd’s and ind’s. The following sets
are not recursive:

(a) {(F, σ ) | σ an ind and F |=unr σ }; {(F, σ ) | σ an ind and F |=fin σ };
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(b) {(F, σ ) | σ an fd and F |=unr σ }; and {(F, σ ) | σ an fd and F |=fin σ }.

Crux We prove (a) using a reduction from the word problem for (finite) monoids to the
(finite) implication problem for fd’s and ind’s. The proof of part (b) is similar and is left for
Exercise 9.5. We first consider the unrestricted case.

Let H be a fixed alphabet. Let E = {αi = βi | i ∈ [1, n]} be a set of equalities over H∗,
and let e be another equality α = β. A prefix is defined to be any prefix of αi, βi, α, or
β (including the empty string ε, and full words α1, β1, etc.). A single relation R is used,
which has attributes

(i) Aγ , for each prefix γ ;

(ii) Ax,Ay,Axy;

(iii) Aya, for each a ∈ H; and

(iv) Axya, for each a ∈ H;

where x and y are two fixed symbols.
To understand the correspondence between constrained relations and homomorphisms

over monoids, suppose that there is a homomorphism h from H∗ to some monoid M .
Intuitively, a tuple of R will hold information about two elements h(x), h(y) of M (in
columns Ax,Ay, respectively) and their product h(x) ◦ h(y) = h(xy) (in column Axy).
For each a in H, tuples will also hold information about h(ya) and h(xya) in columns
Aya,Axya. More precisely, the instance IM,h corresponding to the monoid M and the
homomorphism h : H∗ →M is defined by

IM,h = {tu,v | u, v ∈ H∗},

where for each u, v ∈ H∗, tu,v is the tuple such that

tu,v(Ax)= h(u), tu,v(Aγ )= h(γ ), for each prefix γ ,

tu,v(Ay)= h(v), tu,v(Aya)= h(va), for each a ∈ H,

tu,v(Axy)= h(uv), tu,v(Axya)= h(uva), for each a ∈ H.

Formally, to force the correspondence between the relations and homomorphisms over
monoids, we use a set F of dependencies. In other words, we wish to find a set F of
dependencies that characterizes precisely the instances over R that correspond to some
homomorphism h from H∗ to some monoid M . The key to the proof is that this can be
done using just fd’s and ind’s. Strictly speaking, the dependencies of (8) in the following
list are not ind’s because an attribute is repeated in the left-hand side. As discussed in
Exercise 9.4(e), the set of dependencies used here can be modified to a set of proper ind’s
that has the desired properties. In addition, we use fd’s with an empty left-hand side, which
are sometimes not considered as real fd’s. The use of such dependencies is not crucial. A
slightly more complicated proof can be found that uses only fd’s with a nonempty left-hand
side. The set F is defined as follows:
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1. ∅→ Aγ for each prefix γ ;

2. AxAy → Axy;

3. Ay → Aya, for each a ∈ �;

4. R[Aε]⊆ R[Ay];

5. R[Aγ ,Aγa]⊆ R[Ay,Aya], for each a ∈ � and prefix γ ;

6. R[Axy,Axya]⊆ R[Ay,Aya], for each a ∈ �;

7. R[Ax,Aya, Axya]⊆ R[Ax,Ay,Axy], for each a ∈ �;

8. R[Ay,Aε,Ay]⊆ R[Ax,Ay,Axy]; and

9. R[Aαi]⊆ R[Aβi], for each i ∈ [1, n].

The ind σ is R[Aα]⊆ R[Aβ].
Let I be an instance satisfying �. Observe that I has to satisfy a number of implied

properties. In particular, one can verify that I also satisfies the following property:

R[Axya]⊆ R[Aya]⊆ R[Ay]= R[Axy]⊆ R[Ax]

and that adom(I )⊆ I [Ax].
We now show that � |=unr σ iff E |=unr e. We first show that E �|=unr e implies

� �|=unr σ . Suppose that there is a monoid M and homomorphism h : �∗ →M that sat-
isfies the equations of E but violates the equation e. Consider IM,h defined earlier. It is
straightforward to verify that I |=� but I �|= σ .

For the opposite direction, suppose now that E |=unr e, and let I be a (possibly infinite)
instance of R that satisfies �. To conclude the proof, it must be shown that I [Aα]⊆ I [Aβ].
(Observe that these two relations both consist of a single tuple because of the fd’s with an
empty left-hand-side.)

We now define a function h : �∗ → adom(I ). We will prove that h is a homomorphism
from �∗ to a free monoid whose elements are h(�∗) and that satisfies the equations of E
(and hence, e). We will use the fact that the monoid satisfies e to derive that I [Aα]⊆ I [Aβ].

We now give an inductive definition of h and show that it has the property that h(v) ∈
I [Ay] for each v ∈ �∗.

Basis: Set h(ε) to be the element in I [Aε]. Note that h(ε) is also in I [Ay] because R[Aε]⊆
R[Ay] ∈�.

Inductive step: Given h(v) and a ∈ �, let t ∈ I be such that t[Ay]= h(v). Define h(va)=
t (Aya). This is uniquely determined because Ay → Aya ∈ �. In addition, h(va) ∈
I [Ay] because R[Ax,Aya, Axya]⊆ R[Ax,Ay,Axy] ∈�.

We next show by induction on v that

(†) 〈h(u), h(v), h(uv)〉 ∈ I [Ax,Ay,Axy] for each u, v ∈ �∗.

For a fixed u, the basis (i.e., v = ε) is provided by the fact that h(u) ∈ I [Ay] and the
ind R[Ay,Aε,Ay]⊆ R[Ax,Ay,Axy] ∈�. For the inductive step, let 〈h(u), h(v), h(uv)〉 ∈
I [Ax,Ay,Axy] and a ∈ �. Let t ∈ I be such that t[Ax,Ay,Axy] = 〈h(u), h(v), h(uv)〉.
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Then by construction of h, h(va)= t (Aya), and from the ind R[Axy,Axya]⊆ R[Ay,Aya],
we have h(uva) = t (Axya). Finally, the ind R[Ax,Aya, Axya] ⊆ R[Ax,Ay,Axy] implies
that 〈h(u), h(va), h(uva)〉 ∈ I [Ax,Ay,Axy] as desired.

Define the binary operation ◦ on h(�∗) as follows. For a, b ∈ h(�∗), let

a ◦ b = c if for some t ∈ I , t[Ax,Ay,Axy]= 〈a, b, c〉.

There is such a tuple by (†) and c is uniquely defined because Ax,Ay → Axy ∈ �. Fur-
thermore, by (†), for each u, v, h(u) ◦ h(v)= h(uv). Thus for h(u), h(v), h(w) in h(�∗),

(h(u) ◦ h(v)) ◦ h(w)= h(uvw)= (h(u) ◦ h(v)) ◦ h(w),

and

h(u) ◦ h(ε)= h(u)

so (h(�∗), ◦) is a monoid. In addition, h is a homomorphism from the free monoid over �∗
to the monoid (h(�∗), ◦).

It is easy to see that I [Aαi] = {h(αi)} and I [Aβi] = {h(βi)} for i ∈ [1, n]. Let i be
fixed. Because R[Aαi] ⊆ R[Aβi], h(αi) = h(βi). Because E |=unr e, h(α) = h(β). Thus
I [Aα]= {h(α)} = {h(β)} = I [Aβ]. It follows that I |=unr R[Aα]⊆ R[Aβ] as desired.

This completes the proof for the unrestricted case. For the finite case, note that every-
thing has to be finite: The monoid is finite, I is finite, and the monoid h[�∗] is finite. The
rest of the argument is the same.

The issue of decidability of finite and unrestricted implication for classes of dependen-
cies is revisited in Chapter 10.

9.3 Nonaxiomatizability of fd’s + ind’s

The inference rules given previously for fd’s, mvd’s and ind’s can be viewed as “inference
rule schemas,” in the sense that each of them can be instantiated with specific attribute sets
(sequences) to create infinitely many ground inference rules. In these cases the family of
inference rule schemas is finite, and we informally refer to them as “finite axiomatizations.”

Rather than formalizing the somewhat fuzzy notion of inference rule schema, we focus
in this section on families R of ground inference rules. A (ground) axiomatization of a
family S of dependencies is a set of ground inference rules that is sound and complete for
(finite or unrestricted) implication for S. Two properties of an axiomatization R will be
considered, namely: (1) R is recursive, and (2) R is k-ary, in the sense (formally defined
later in this section) that each rule inR has at most k dependencies in its condition.

Speaking intuitively, if S has a “finite axiomatization,” that is, if there is a finite
family R′ of inference rule schemas that is sound and complete for S, then R′ specifies
a ground axiomatization for S that is both recursive and k-ary for some k. Two results are
demonstrated in this section: (1) There is no recursive axiomatization for finite implication
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of fd’s and ind’s, and (2) there is no k-ary axiomatization for finite implication of fd’s and
ind’s. It is also known that there is no k-ary axiomatization for unrestricted implication of
fd’s and ind’s. The intuitive conclusion is that the family of fd’s and ind’s does not have a
“finite axiomatization” for finite implication or for unrestricted implication.

To establish the framework and some notation, we assume temporarily that we
are dealing with a family F of database instances over a fixed database schema R =
{R1, . . . , Rn}. Typically, F will be the set of all finite instances over R, or the set of all
(finite or infinite) instances over R. All the notions that are defined are with respect to F .
Let S be a family of dependencies over R. (At present, S would be the set of fd’s and ind’s
over R.) Logical implication |= among dependencies in S is defined with respect to F in
the natural manner. In particular, |=unr and |=fin are obtained by letting F be the set of
unrestricted or finite instances.

A (ground) inference rule over S is an expression of the form

ρ = if S then s,

where S ⊆ S and s ∈ S.
Let R be a set of rules over R. Then R is sound if each rule in R is sound. Let

� ∪ {σ } ⊆ S be a set of dependencies over R. A proof of σ from � using R is a finite
sequence σ1, . . . , σn = σ such that for each i ∈ [1, n], either (1) σi ∈ �, or (2) for some
rule ‘if S then s’ inR, σi = s and S ⊆ {σ1, . . . , σi−1}. We write � �R σ (or � � σ ifR is
understood) if there is a proof of σ from � using R. Clearly, if each rule in R is sound,
then � � σ implies � |= σ . The set R is complete if for each pair (�, σ ), � |= σ implies
� �R σ . A (sound and complete) axiomatization for logical implication is a setR of rules
that is sound and complete.

The aforementioned notions are now generalized to permit all schemas R. In particular,
we consider a set R of rules that is a union ∪{RR | R is a schema}. The notions of sound,
proof, etc.can be generalized in the natural fashion.

Note that with the preceding definition, every set S of dependencies has a sound and
complete axiomatization. This is provided by the setR of all rules of the form

if S then s,

where S |= s. Clearly, such trivial axiomatizations hold no interest. In particular, they are
not necessarily effective (i.e., one may not be able to tell if a rule is inR, so one may not be
able to construct proofs that can be checked). It is thus natural to restrictR to be recursive.

We now present the first result of this section, which will imply that there is no
recursive axiomatization for finite implication of fd’s and ind’s. In this result we assume
that the dependencies in S are sentences in first-order logic.

Proposition 9.3.1 Let S be a class of dependencies. If S has a recursive axiomatization
for finite implications, then finite implication is decidable for S.

Crux Suppose that S has a recursive axiomatization. Consider the set
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Implic= {(S, s) | S ⊆ S, s ∈ S, and S |=fin s}.

First note that the set Implic is r.e.; indeed, let R be a recursive axiomatization for S. One
can effectively enumerate all proofs of implication that use rules in R. This allows one to
enumerate Implic effectively. Thus Implic is r.e. We argue next that Implic is also co-r.e.
To conclude that a pair (S, s) is not in Implic, it is sufficient to exhibit a finite instance
satisfying S and violating s. To enumerate all pairs (S, s) not in Implic, one proceeds as
follows. The set of all pairs (S, s) is clearly r.e., as is the set of all instances over a fixed
schema. Repeat for all positive integers n the following. Enumerate the first n pairs (S, s)
and the first n instances. For each (S, s) among the n, check whether one of the n instances
is a counterexample to the implication S |= s, in which case output (S, s). Clearly, this
procedure enumerates the complement of Implic, so Implic is co-r.e. Because it is both r.e.
and co-r.e., Implic is recursive, so there is an algorithm testing whether (S, s) is in Implic.

It follows that there is no recursive axiomatization for finite implication of fd’s and
ind’s. [To see this, note that by Theorem 9.2.4, logical implication for fd’s and ind’s is
undecidable. By Proposition 9.3.1, it follows that there can be no finite axiomatization for
fd’s and ind’s.] Because implication for jd’s is decidable (Theorem 8.4.12), but there is no
axiomatization for them (Theorem 8.3.4), the converse of the preceding proposition does
not hold.

Speaking intuitively, the preceding development implies that there is no finite set
of inference rule schemas that is sound and complete for finite implication of fd’s and
ind’s. However, the proof is rather indirect. Furthermore, the approach cannot be used in
connection with unrestricted implication, nor with classes of dependencies for which finite
implication is decidable (see Exercise 9.9). The notion of k-ary axiomatization developed
now shall overcome these objections.

A rule ‘if S then s’ is k-ary for some k ≥ 0 if |S| = k. An axiomatizationR is k-ary if
each rule in R is l-ary for some l ≤ k. For example, the instantiations of rules FD1 and
IND1 are 0-ary, those of rules FD2 and IND2 are 1-ary, and those of FD3 and IND3
are 2-ary. Theorem 9.3.3 below shows that there is no k-ary axiomatization for finite
implication of fd’s and ind’s.

We now turn to an analog in terms of logical implication of k-ary axiomatizability.
Again let S be a set of dependencies over R, and let F be a family of instances over R. Let
k ≥ 0. A set � ⊆ S is:

closed under implication with respect to S if σ ∈ � whenever

(a) σ ∈ S and (b) � |= σ

closed under k-ary implication with respect to S if σ ∈ � whenever

(a) σ ∈ S, and for some � ⊆ �, (b1) � |= σ and (b2) |�| ≤ k.

Clearly, if � is closed under implication, then it is closed under k-ary implication for each
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k ≥ 0, and if � is closed under k-ary implication, then it is closed under k′-ary implication
for each k′ ≤ k.

Proposition 9.3.2 Let R be a database schema, S a set of dependencies over R, and
k ≥ 0. Then there is a k-ary axiomatization for S iff whenever � ⊆ S is closed under k-ary
implication, then � is closed under implication.

Proof Suppose that there is a k-ary axiomatization for S, and let � ⊆ S be closed under
k-ary implication. Suppose further that � |= σ for some σ ∈ S. Let σ1, . . . , σn be a proof
of σ from � using R. Using the fact that R is k-ary and that � is closed under k-ary
implication, a straightforward induction shows that σi ∈ � for i ∈ [1, n].

Suppose now that for each � ⊆ S, if � is closed under k-ary implication, then � is
closed under implication. Set

R= {‘if S then s’ | S ⊆ S, s ∈ S, |S| ≤ k, and S |= s}.

To see thatR is complete, suppose that � |= σ . Consider the set �∗ = {γ | � �R γ }. From
the construction of R, �∗ is closed under k-ary implication. By assumption it is closed
under implication, and so � �R σ as desired.

In the following, we consider finite implication, so F is the set of finite instances.

Theorem 9.3.3 For no k does there exist a k-ary sound and complete axiomatization
for finite implication of fd’s and ind’s taken together. More specifically, for each k there
is a schema R for which there is no k-ary sound and complete axiomatization for finite
implication of fd’s and ind’s over R.

Proof Let k ≥ 0 be fixed. Let R = {R0, . . . , Rk} be a database schema where sort(Ri)=
{A,B} for each i ∈ [0, k]. In the remainder of this proof, addition is always done modulo
k + 1. The dependencies � =�a ∪�b and σ are defined by

(a) �a = {Ri : A→ B | i ∈ [0, k]};
(b) �b = {Ri[A]⊆ Ri+1[B] | i ∈ [0, k]}; and

(c) σ = R0[B]⊆ Rk[A].

Let � be the union of � with all fd’s and ind’s that are tautologies (i.e., that are satisfied by
all finite instances over R).

In the remainder of the proof, it is shown that (1) � is not closed under finite impli-
cation, but (2) � is closed under k-ary finite implication. Proposition 9.3.2 will then imply
that the family of fd’s and ind’s has no k-ary sound and complete axiomatization for R.

First observe that � does not contain σ , so to show that � is not closed under finite
implication, it suffices to demonstrate that � |=fin σ . Let I be a finite instance of R that
satisfies �. By the ind’s of �, |I(Ri)[A]| ≤ |I(Ri+1)[B]| for each i ∈ [0, k], and by the fd’s
of �, |I(Ri)[B]| ≤ |I(Ri)[A]| for each i ∈ [0, k]. From this we obtain
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|I(R0)[A]| ≤ |I(R1)[B]| ≤ |I(R1)[A]|
≤ . . .

≤ |I(Rk)[B]| ≤ |I(Rk)[A]| ≤ |I(R0)[B]| ≤ |I(R0)[A]|.
In particular, |I(Rk)[A]| = |I(R0)[B]|. Since I is finite and we have I(Rk)[A]⊆ I(R0)[B]
and |I(Rk)[A]| = |I(R0)[B]|, it follows that I(R0)[B]⊆ I(Rk)[A] as desired.

We now show that � is closed under k-ary finite implication. Suppose that $⊆ � has
no more than k elements (|$| ≤ k). It must be shown that if γ is an fd or ind and $ |=fin γ ,
then γ ∈ �. Because � contains k + 1 ind’s, any subset $ of � that has no more than k

members must omit some ind δ of �. We shall exhibit an instance I such that I |= γ iff
γ ∈ � − {δ}. (Thus I will be an Armstrong instance for � − {δ}.) It will then follow that
� − {δ} is closed under finite implication. Because $⊆ � − {δ}, this will imply that for
each fd or ind γ , if $ |=fin γ , then � − {δ} |=fin γ , so γ ∈ �.

Because � is symmetric with regard to ind’s, we can assume without loss of generality
that δ is the ind Rk[A] ⊆ R0[B]. Assuming that N × N is contained in the underlying
domain, define I so that

I(R0)= {〈(0, 0), (0, k + 1)〉, 〈(1, 0), (1, k + 1)〉, 〈(2, 0), (1, k + 1)〉}

and for each i ∈ [1, k],

I(Ri)= {〈(0, i), (0, i − 1)〉, 〈(1, i), (1, i − 1)〉, . . . ,
〈(2i + 1, i), (2i + 1, i − 1)〉, 〈(2i + 2, i), (2i + 1, i − 1)〉}.

Figure 9.2 shows I for the case k = 3.
We now show for each fd and ind γ over R that I |= γ iff γ ∈ �− δ. Three cases arise:

1. γ is a tautology. Then this clearly holds.

2. γ is an fd that is not a tautology. Then γ is equivalent to one of the following for
some i ∈ [0, k]:

Ri : A→ B, Ri : B→ A,

Ri : ∅→ A, Ri : ∅→ B,

or Ri : ∅→ AB.

If γ is Ri : A→ B, then γ ∈ � and clearly I |= γ . In the other cases, γ �∈ � and
I �|= γ .

3. γ is an ind that is not a tautology. Considering now which ind’s I satisfies, note
that the only pairs of nondisjoint columns of relations in I are

I(R0)[A], I(R1)[B];
I(R1)[A], I(R2)[B]; . . . ;
I(Rk−1)[A], I(Rk)[B].

Furthermore, I �|= Ri+1[B]⊆ Ri[A] for each i ∈ [0, k]; and I |= Ri[A]⊆ Ri+1[B].

This implies that I |= γ iff γ ∈ � − {δ}, as desired.
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I(R0) A B I(R1) A B

(0,0) (0,4) (0,1) (0,0)

(1,0) (1,4) (1,1) (1,0)

(2,0) (1,4) (2,1) (2,0)

(3,1) (3,0)

(4,1) (3,0)

I(R2) A B I(R3) A B

(0,2) (0,1) (0,3) (0,2)

(1,2) (1,1) (1,3) (1,2)

(2,2) (2,1) (2,3) (2,2)

(3,2) (3,1) (3,3) (3,2)

(4,2) (4,1) (4,3) (4,2)

(5,2) (5,1) (5,3) (5,2)

(6,2) (5,1) (6,3) (6,2)

(7,3) (7,2)

(8,3) (7,2)

Figure 9.2: An Armstrong relation for � − δ

In the proof of the preceding theorem all relations used are binary, and all fd’s and ind’s
are unary, in the sense that at most one attribute appears on either side of each dependency.
In proofs that there is no k-ary axiomatization for unrestricted implication of fd’s and ind’s,
some of the ind’s used involve at least two attributes on each side. This cannot be improved
to unary ind’s, because there is a 2-ary sound and complete axiomatization for unrestricted
implication of unary ind’s and arbitrary fd’s (see Exercise 9.18).

9.4 Restricted Kinds of Inclusion Dependency

This section explores two restrictions on ind’s for which several positive results have been
obtained. The first one focuses on sets of ind’s that are acyclic in a natural sense, and the
second restricts the ind’s to having only one attribute on either side. The restricted depen-
dencies are important because they are sufficient to model many natural relationships, such
as those captured by semantic models (see Chapter 11). These include subtype relationships
of the kind “every student is also a person.”

This section also presents a generalization of the chase that incorporates ind’s. Be-
cause ind’s are embedded, chasing in this context may lead to infinite chasing sequences.
In the context of acyclic sets of ind’s, however, the chasing sequences are guaranteed
to terminate. The study of infinite chasing sequences will be taken up in earnest in
Chapter 10.
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Ind’s and the Chase

Because ind’s may involve more than one relation, the formal notation of the chase must be
extended. Suppose now that R is a database schema, and let q = (T, t) be a tableau query
over R. The fd and jd rules are generalized to this context in the natural fashion.

We first present an example and then describe the rule that is used for ind’s.

Example 9.4.1 Consider the database schemas consisting of two relation schemas P,Q
with sort(P )= ABC, sort(Q)= DEF, the dependencies

Q[DE]⊆ P [AB] and P : A→ B,

and the tableau T shown in Fig. 9.3. Consider T1 and T2 in the same figure. The tableau
T1 is obtained by applying to T the ind rule given after this example. The intuition is that
the tuples 〈x, yi〉 should also be in the P -relation because of the ind. Then T2 is obtained
by applying the fd rule. Tableau minimization can be applied to obtain T3.

The following rule is used for ind’s.

ind rule: Let σ = R[X]⊆ S[Y ] be an ind, let u ∈ T(R), and suppose that there is no free
tuple v ∈ T(S) such that v[Y ]= u[X]. In this case, we say that σ is applicable to R(u).
Let w be a free tuple over S such that w[Y ]= u[X] and w has distinct new variables in
all coordinates of sort(S)− Y that are greater than all variables occurring in q. Then
“the” result of applying σ to R(u) is (T′, t), where

• T′(P )= T(P ) for each relation name P ∈ R − {S}, and

• T′(S)= T(S) ∪ {w}.
For a tableau query q and a set � of ind’s, it is possible that two terminal chasing

sequences end with nonisomorphic tableau queries, that there are no finite terminal chas-
ing sequences, or that there are both finite terminal chasing sequences and infinite chasing
sequences (see Exercise 9.12). General approaches to resolving this problem will be con-
sidered in Chapter 10. In the present discussion, we focus on acyclic sets of ind’s, for which
the chase always terminates after a finite number of steps.

Acyclic Inclusion Dependencies

Definition 9.4.2 A family � of ind’s over R is acyclic if there is no sequence Ri[Xi]⊆
Si[Yi] (i ∈ [1, n]) of ind’s in � where for i ∈ [1, n], Ri+1 = Si for i ∈ [1, n − 1], and
R1 = Sn. A family � of dependencies has acyclic ind’s if the set of ind’s in � is acyclic.

The following is easily verified (see Exercise 9.14):

Proposition 9.4.3 Let q be a tableau query and � a set of fd’s, jd’s, and acyclic ind’s
over R. Then each chasing sequence of q by � terminates after an exponentially bounded
number of steps.
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Figure 9.3: Chasing with ind’s

For each tableau query q and set � of fd’s, jd’s, and acyclic ind’s, let chase(q,�)

denote the result of some arbitrary chasing sequence of q by �. (One can easily come up
with some syntactic strategy for arbitrarily choosing this sequence.)

Using an analog to Lemma 8.4.3, one obtains the following result on tableau query
containment (an analog to Theorem 8.4.8).

Theorem 9.4.4 Let q, q ′ be tableau queries and � a set of fd’s, jd’s, and acyclic ind’s
over R. Then q ⊆� q ′ iff chase(q,�)⊆ chase(q ′, �).

Next we consider the application of the chase to implication of dependencies. For
database schema R and ind σ = R[X] ⊆ S[Y ] over R, the tableau query of σ is qσ =
({R(uσ)}, 〈uσ 〉), where uσ is a free tuple all of whose entries are distinct. For example,
given R[ABCD], S[EFG], and σ = R[BC] ⊆ S[GE], qσ = ({R(x1, x2, x3, x4)}, 〈x1, x2,
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x3, x4〉). In analogy with Theorem 8.4.12, we have the following for fd’s, jd’s, and acyclic
ind’s.

Theorem 9.4.5 Let � be a set of fd’s, jd’s, and acyclic ind’s over database schema R
and let T be the tableau in chase(qσ ,�). Then � |=unr σ iff

(a) For fd or jd σ over R, T satisfies the conditions of Theorem 8.4.12.

(b) For ind σ = R[X] ∈ S[Y ], uσ [X] ∈ T(S)[Y ].

This yields the following:

Corollary 9.4.6 Finite and unrestricted implication for sets of fd’s, jd’s, and acyclic
ind’s coincide and are decidable in exponential time.

An improvement of the complexity here seems unlikely, because implication of an ind
by an acyclic set of ind’s is np-complete (see Exercise 9.14).

Unary Inclusion Dependencies

A unary inclusion dependency (uind) is an ind in which exactly one attribute appears on
each side. The uind’s arise frequently in relation schemas in which certain columns range
over values that correspond to entity types (e.g., if SS# is a key for the Person relation and
is also used to identify people in the Employee relation).

As with arbitrary ind’s, unrestricted and finite implication do not coincide for fd’s
and uind’s (proof of Theorem 9.2.2). However, both forms of implication are decidable
in polynomial time. In this section, the focus is on finite implication. We present a sound
and complete axiomatization for finite implication of fd’s and uind’s (but in agreement with
Theorem 9.3.3, it is not k-ary for any k).

For uind’s considered in isolation, the inference rules for ind’s are specialized to
yield the following two rules, which are sound and complete for (unrestricted and finite)
implication. Here A, B, and C range over attributes and R, S, and T over relation names:

UIND1: (reflexivity) R[A]⊆ R[A].

UIND2: (transitivity) If R[A]⊆ S[B] and S[B]⊆ T [C], then R[A]⊆ T [C].

To capture the interaction of fd’s and uind’s in the finite case, the following family of
rules is used:

C: (cycle rules) For each positive integer n,

if




R1 : A1 → B1,

R2[A2]⊆ R1[B1],
. . . ,

Rn : An→ Bn, and
R1[A1]⊆ Rn[Bn]

then




R1 : B1 → A1,

R1[B1]⊆ R2[A2],
. . . ,

Rn : Bn→ An, and
Rn[Bn]⊆ R1[A1].
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The soundness of this family of rules follows from a straightforward cardinality argument.
More generally, we have the following (see Exercise 9.16):

Theorem 9.4.7 The set {FD1, FD2, FD3, UIND1, UIND2} along with the cycle rules
(C) is sound and complete for finite implication of fd’s and uind’s. Furthermore, finite
implication is decidable in polynomial time.
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Exercises

Exercise 9.1 Complete the proof of Proposition 9.1.5.

Exercise 9.2 Complete the proof of Theorem 9.1.7.

Exercise 9.3 [CFP84] (In this exercise, by a slight abuse of notation, we allow fd’s with
sequences rather than sets of attributes.) Demonstrate the following:

(a) If | �A| = | �B|, then {R[ �A �C]⊆ S[ �B �D], S : �B→ �D} |=unr R : �A→ �C.
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(b) If | �A| = | �B|, then {R[ �A �C]⊆ S[ �B �D], R[ �A �E]⊆ S[ �B �F ], S : �B→ �D} |=unr R[ �A �C �E]
⊆ S[ �B �D �F ].

(c) Suppose that | �A| = | �B|; � = {R[ �A �C] ⊆ S[ �B �D], R[ �A �E] ⊆ S[ �B �D], S : �B → �D};
and I |=�. Then u[ �C]= u[ �E] for each u ∈ I(R).

Exercise 9.4 As defined in the text, we require in ind R[A1, . . . , Am]⊆ S[B1, . . . , Bm] that
the Ai’s and Bi’s are distinct. A repeats-permitted inclusion dependency (rind) is defined as was
inclusion dependency, except that repeats are permitted in the attribute sequences on both the
left- and right-hand sides.

(a) Show that if � is a set of ind’s, σ a rind, and � |=unr σ , then σ is equivalent to an
ind.

(b) Exhibit a set � of ind’s and fd’s such that � |=unr R[AB]⊆ S[CC]. Do the same for
R[AA]⊆ R[BC].

♠ (c) [Mit83a] Consider the rules

IND4: If R[A1A2]⊆ S[BB] and R[ �C]⊆ T [ �D], then R[ �C ′]⊆ T [ �D], where �C ′
is obtained from �C by replacing one or more occurrences of A2 by A1.

IND5: If R[A1A2]⊆ S[BB] and T [ �C]⊆ R[ �D], then T [ �C]⊆ R[ �D′], where �D′
is obtained from �D by replacing one or more occurrences of A2 by A1.

Prove that the inference rules {IND1, IND2, IND3, IND4, IND5} are sound and
complete for finite implication of sets of rind’s.

(d) Prove that unrestricted and finite implication coincide for rind’s.

(e) A left-repeats-permitted inclusion dependency (l-rind) is a rind for which there are no
repeats on the right-hand side. Given a set � ∪ {σ } of l-rind’s over R, describe how
to construct a schema R′ and ind’s �′ ∪ {σ ′} over R′ such that � |= σ iff �′ |= σ ′
and � |=fin σ iff �′ |=fin σ

′.
(f) Do the same as in part (e), except for arbitrary rind’s.

Exercise 9.5 [CV85] Prove part (b) of Theorem 9.2.4. Hint: In the proof of part (a), extend
the schema of R to include new attributes Aα′, Aβ ′, and Ay′; add dependencies Ay → Ay′,
R[Aα,Aα′]⊆ R[Ay,Ay′], R[Aβ,Aβ ′]⊆ R[Ay,Ay′]; and use Aα′ → Aβ ′ as σ .

Exercise 9.6

(a) Develop an alternative proof of Theorem 9.3.3 in which δ is an fd rather than an ind.

(b) In the proof of Theorem 9.3.3 for finite implication, the dependency σ used is an ind.
Using the same set �, find an fd that can be used in place of σ in the proof.

Exercise 9.7 Prove that there is no k for which there is a k-ary sound and complete axiomati-
zation for finite implication of fd’s, jd’s, and ind’s.

0Exercise 9.8 [SW82] Prove that there is no k-ary sound and complete set of inference rules
for finite implication of emvd’s.

Exercise 9.9 Recall the notion of sort-set dependency (ssd) from Exercise 8.32.

(a) Prove that finite and unrestricted implication coincide for fd’s and ssd’s considered
together. Conclude that implication for fd’s and ssd’s is decidable.
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0 (b) [GH86] Prove that there is no k-ary sound and complete set of inference rules for
finite implication of fd’s (key dependencies) and ssd’s taken together.

Exercise 9.10

(a) [CFP84] A set of ind’s is bounded by k if each ind in the set has at most k attributes
on the left-hand side and on the right-hand side. Show that logical implication for
bounded sets of ind’s is decidable in polynomial time.

(b) [CV83] An ind is typed if it has the form R[ �A ]⊆ S[ �A ]. Exhibit a polynomial time
algorithm for deciding logical implication between typed ind’s.

Exercise 9.11 Suppose that some attribute domains may be finite.

(a) Show that {IND1, IND2, IND3} remains sound in the framework.

(b) Show that if one-element domains are permitted, then {IND1, IND2, IND3} is not
complete.

(c) Show for each n > 0 that if all domains are required to have at least n elements, then
{IND1, IND2, IND3} is not complete.

Exercise 9.12 Suppose that no restrictions are put on the order of application of ind rules in
chasing sequences.

(a) Exhibit a tableau query q and a set � of ind’s and two terminal chasing sequences of
q by � that end with nonisomorphic tableau queries.

(b) Exhibit a tableau query q and a set � of ind’s, a terminal chasing sequence of q by
�, and an infinite chasing sequence of q by �.

(c) Exhibit a tableau query q and a set � of ind’s such that q has no finite terminal
chasing sequence by �.

♠Exercise 9.13 [JK84b] Recall that for tableau queries q and q ′ and a set � of fd’s and jd’s
over R, q ⊆� q ′ if for each instance I that satisfies �, q(I )⊆ q ′(I ). In the context of ind’s, this
containment relationship may depend on whether infinite instances are permitted or not. For
tableau queries q, q ′ and a set � of dependencies over R, we write q ⊆�,fin q

′ (q ⊆�,unr q
′) if

q(I)⊆ q ′(I) for each finite (unrestricted) instance I that satisfies �.

(a) Show that if � is a set of fd’s and jd’s, then ⊆�,fin and ⊆�,unr coincide.

(b) Exhibit a set � of fd’s and ind’s and tableau queries q, q ′ such that q ⊆�,fin q
′ but

q �⊆�,unr q
′.

Exercise 9.14

(a) Prove Proposition 9.4.3.

(b) Prove Theorem 9.4.4.

(c) Let q be a tableau query and � a set of fd’s, jd’s, and ind’s over R, where the set of
ind’s in � is acyclic; and suppose that q ′, q ′′ are the final tableaux of two terminal
chasing sequences of q by � (where the order of rule application is not restricted).
Prove that q ≡ q ′.

(d) Prove Theorem 9.4.5.

(e) Prove Corollary 9.4.6.

Exercise 9.15
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(a) Exhibit an acyclic set � of ind’s and a tableau query q such that chase(q,�) is
exponential in the size of � and q.

(b) [CK86] Prove that implication of an ind by an acyclic set of ind’s is np-complete.
Hint: Use a reduction from the problem of Permutation Generation [GJ79].

(c) [CK86] Recall from Exercise 9.10(b) that an ind is typed if it has the form R[ �A]⊆
S[ �A]. Prove that implication of an ind by a set of fd’s and an acyclic set of typed
ind’s is np-hard. Hint: Use a reduction from 3-SAT.

♠Exercise 9.16 [CKV90] In this exercise you will prove Theorem 9.4.7. The exercise begins by
focusing on the unirelational case; for notational convenience we omit the relation name from
uind’s in this context.

Given a set � of fd’s and uind’s over R, define G(�) to be a multigraph with node set R
and two colors of edges: a red edge from A to B if A→ B ∈ �, and a black edge from A to
B is B ⊆ A ∈ �. If A and B have red (black) edges in both directions, replace them with an
undirected red (black) edge.

(a) Suppose that� is closed under the inference rules. Prove thatG(�) has the following
properties:

1. Nodes have red (black) self-loops, and the red (black) subgraph of G(�) is
transitively closed.

2. The subgraphs induced by the strongly connected components of G(�)

contain only undirected edges.
3. In each strongly connected component, the red (black) subset of edges

forms a collection of node disjoint cliques (the red and black partitions of
nodes could be different).

4. If A1 . . . Am→ B is an fd in � and A1, . . . , Am have common ancestor A
in the red subgraph of G(�), then G(�) contains a red edge from A to B.

(b) Given a set � of fd’s and uind’s closed under the inference rules, use G(�) to build
counterexample instances that demonstrate that � �� σ implies � �|=fin σ for fd or
uind σ .

(c) Use the rules to develop a polynomial time algorithm for inferring finite implication
for a set of fd’s and uind’s.

(d) Generalize the preceding development to arbitrary database schemas.

Exercise 9.17

(a) Let k > 1 be an integer. Prove that there is a database schema R with at least one
unary relation R ∈ R, and a set � of fd’s and ind’s such that

(i) for each I |=�, |I(R)| = 0 or |I(R)| = 1 or |I(R)| ≥ k.
(ii) for each l ≥ k there is an instance Il |=� with |I(R)| = l.

(b) Prove that this result cannot be strengthened so that condition (i) reads
(i) (i′) for each I |=�, |I(R)| = 0 or |I(R)| = 1 or |I(R)| = k.

♠Exercise 9.18 [CKV90]

(a) Show that the set of inference rules containing {FD1, FD2, FD3, UIND1, UIND2}
and

FD-UIND1: If ∅→ A and R[B]⊆ R[A], then ∅→ B.

FD-UIND1: If ∅→ A and R[B]⊆ R[A], then R[A]⊆ R[B].
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is sound and complete for unrestricted logical implication of fd’s and uind’s over a
single relation schema R.

(b) Generalize this result to arbitrary database schemas, under the assumption that in all
instances, each relation is nonempty.
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Alice: fd’s, jd’s, mvd’s, ejd’s, emvd’s, ind’s—it’s all getting very confusing.
Vittorio: Wait! We’ll use logic to unify it all.

Sergio: Yes! Logic will make everything crystal clear.
Riccardo: And we’ll get a better understanding of dependencies that make sense.

The dependencies studied in the previous chapters have a strong practical motivation
and provide a good setting for studying two of the fundamental issues in dependency

theory: deciding logical implication and constructing axiomatizations.
Several new dependencies were introduced in the late 1970s and early 1980s, some-

times motivated by practical examples and later motivated by a desire to understand funda-
mental theoretical properties of unirelational dependencies or to find axiomatizations for
known classes of dependencies. This process culminated with a rather general perspec-
tive on dependencies stemming from mathematical logic: Almost all dependencies that
have been introduced in the literature can be described as logical sentences having a sim-
ple structure, and further syntactic restrictions on that structure yield natural subclasses
of dependencies. The purpose of this chapter is to introduce this general class of depen-
dencies and its natural subclasses and to present important results and techniques obtained
for them.

The general perspective is given in the first section, along with a simple application of
logic to obtain the decidability of implication for a large class of dependencies. It turns out
that the chase is an invaluable tool for analyzing implication; this is studied in the second
section. Axiomatizations for important subclasses have been developed, again using the
chase; this is the topic of the third section. We conclude the chapter with a provocative
alternative view of dependencies stemming from relational algebra.

The classes of dependencies studied in this chapter include complex dependencies that
would not generally arise in practice. Even if they did arise, they are so intricate that they
would probably be unusable—it is unlikely that database administrators would bother to
write them down or that software would be developed to use or enforce them. Nevertheless,
it is important to repeat that the perspective and results discussed in this chapter have served
the important function of providing a unified understanding of virtually all dependencies
raised in the literature and, in particular, of providing insight into the boundaries between
tractable and intractable problems in the area.

216
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10.1 A Unifying Framework

The fundamental property of all of the dependencies introduced so far is that they essen-
tially say, “The presence of some tuples in the instance implies the presence of certain other
tuples in the instance, or implies that certain tuple components are equal.” In the case of
jd’s and mvd’s, the new tuples can be completely specified in terms of the old tuples, but
for ind’s this is not the case. In any case, all of the dependencies discussed so far can be
expressed using first-order logic sentences of the form

(∗) ∀x1 . . .∀xn [ ϕ(x1, . . . , xn)→∃z1 . . . ∃zkψ(y1, . . . , ym) ],

where {z1, . . . , zk} = {y1, . . . , ym} − {x1, . . . , xn}, and where ϕ is a (possibly empty) con-
junction of atoms and ψ a nonempty conjunction. In both ϕ and ψ , one finds relation
atoms of the form R(w1, . . . , wl) and equality atoms of the form w = w′, where each of
the w,w′, w1, . . . , wl is a variable.

Because we generally focus on sets of dependencies, we make several simplifying as-
sumptions before continuing (see Exercise 10.1a). These include that (1) we may eliminate
equality atoms from ϕ without losing expressive power; and (2) we can also assume with-
out loss of generality that no existentially quantified variable participates in an equality
atom in ψ . Thus we define an (embedded) dependency to be a sentence of the foregoing
form, where

1. ϕ is a conjunction of relation atoms using all of the variables x1, . . . , xn;

2. ψ is a conjunction of atoms using all of the variables z1, . . . , zk; and

3. there are no equality atoms in ψ involving existentially quantified variables.

A dependency is unirelational if at most one relation name is used, and it is multire-
lational otherwise. To simplify the presentation, the focus in this chapter is almost exclu-
sively on unirelational dependencies. Thus, unless otherwise indicated, the dependencies
considered here are unirelational.

We now present three fundamental classifications of dependencies.

Full versus embedded: A full dependency is a dependency that has no existential quanti-
fiers.

Tuple generating versus equality generating: A tuple-generating dependency (tgd) is a
dependency in which no equality atoms occur; an equality-generating dependency
(egd) is a dependency for which the right-hand formula is a single equality atom.

Typed versus untyped: A dependency is typed if there is an assignment of variables to
column positions such that (1) variables in relation atoms occur only in their assigned
position, and (2) each equality atom involves a pair of variables assigned to the same
position.

It is sometimes important to distinguish dependencies with a single atom in the right-
hand formula. A dependency is single head if the right-hand formula involves a single
atom; it is multi-head otherwise.

The following result is easily verified (Exercise 10.1b).



218 A Larger Perspective

Untyped

fd’s

ind’s

jd’s

mvd’s

egd’s Multi-head tgd’sSingle-head tgd’s

tgd’s

Embedded

Typed

Full

Figure 10.1: Dependencies

Proposition 10.1.1 Each (typed) dependency is equivalent to a set of (typed) egd’s
and tgd’s.

It is easy to classify the fd’s, jd’s, mvd’s, ejd’s, emvd’s and ind’s studied in Chapters 8
and 9 according to the aforementioned dimensions. All except the last are typed. During the
late 1970s and early 1980s the class of typed dependencies was studied in depth. In many
cases, the results obtained for dependencies and for typed dependencies are equivalent.
However, for negative results the typed case sometimes requires more sophisticated proof
techniques because it imposes more restrictions.

A classification of dependencies along the three axes is given in Fig. 10.1. The gray
square at the lower right indicates that each full multihead tgd is equivalent to a set of
single-head tgd’s. The intersection of ind’s and jd’s stems from trivial dependencies. For
example, R[AB]⊆ R[AB] and ��[AB] over relation R(AB) are equivalent [and are syn-
tactically the same when written in the form of (∗)].

There is a strong relationship between dependencies and tableaux. Tableaux provide
a convenient notation for expressing and working with dependencies. (As will be seen in
Section 10.4, the family of typed dependencies can also be represented using a formalism
based on algebraic expressions.) The tableau representation of two untyped egd’s is shown
in Figs. 10.2(a) and 10.2(b). These two egd’s are equivalent. Note that all egd’s can be
expressed as a pair (T , x = y), where T is a tableau and x, y ∈ var(T ). If (T , x = y) is
typed, unirelational, and x, y are in the A column of T , then this is referred to as an A-egd.

Parts (c) and (d) of Fig. 10.2 show two full tgd’s that are equivalent. This is especially
interesting because, considered as tableau queries, (T ′, t) properly contains (T , t) (see
Exercise 10.4). As suggested earlier, each full tgd is equivalent to some set of full single-
head tgd’s. In the following, when considering full tgd’s, we will assume that they are
single head.

Part (e) of Fig. 10.2 shows a typed tgd that is not single head. To represent these within
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Figure 10.2: Five dependencies

the tableau notation, we use an ordered pair (T1, T2), where both T1 and T2 are tableaux.
This tgd is not equivalent to any set of single-head tgd’s (see Exercise 10.6b).

Finite versus Unrestricted Implication Revisited

We now reexamine the issues of finite versus unrestricted implication using the logical
perspective on dependencies. Because all of these lie within first-order logic, |=fin is co-r.e.
and |=unr is r.e. (see Chapter 2). Suppose that � = {σ1, . . . , σn} is a set of dependencies and
{σ } a dependency. Then � |=unr σ (� |=fin σ ) iff there is no unrestricted (finite) model of
σ1 ∧ · · · ∧ σn ∧¬σ . If these are all full dependencies, then they can be rewritten in prenex
normal form, where the quantifier prefix has the form ∃∗∀∗. (Here each of the σi is uni-
versally quantified, and ¬σ contributes the existential quantifier.) The family of sentences
that have a quantifier prefix of this form (and no function symbols) is called the initially ex-
tended Bernays-Schönfinkel class, and it has been studied in the logic community since the
1920s. It is easily verified that finite and unrestricted satisfiability coincide for sentences
in this class (Exercise 10.3). It follows that finite and unrestricted implication coincide for
full dependencies and, as discussed in Chapter 9, it follows that implication is decidable.
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On the other hand, because fd’s and uind’s are dependencies, we know from Theorem 9.2.4
that the two forms of implication do not coincide for (embedded) dependencies, and both
are nonrecursive. Although not demonstrated here, these results have been extended to the
family of embedded multivalued dependencies (emvd’s).

To summarize:

Theorem 10.1.2

1. For full dependencies, finite and unrestricted implication coincide and are decid-
able.

2. For (typed) dependencies, finite and unrestricted implication do not coincide and
are both undecidable. In fact, this is true for embedded multivalued dependencies.
In particular, finite implication is not r.e., and unrestricted implication is not co-r.e.

10.2 The Chase Revisited

As suggested by the close connection between dependencies and tableaux, chasing is an in-
valuable tool for characterizing logical implication for dependencies. In this section we first
use chasing to develop a test for logical implication of arbitrary dependencies by full depen-
dencies. We also present an application of the chase for determining how full dependencies
are propagated to views. We conclude by extending the chase to work with embedded de-
pendencies. In this discussion we focus almost entirely on typed dependencies, but it will
be clear that the arguments can be modified to the untyped case.

Chasing with Full Dependencies

We first state without proof the natural generalization of chasing by fd’s and jd’s (Theo-
rem 8.4.12) to full dependencies (see Exercise 10.8). In this context we begin either with a
tableau T , or with an arbitrary tgd (T , T ′) or egd (T , x = y). The notion of applying a full
dependency to this is defined in the natural manner. Lemma 8.4.17 and the notation devel-
oped for it generalize naturally to this context, as does the following analog of Theorem
8.4.18:

Theorem 10.2.1 If � is a set of full dependencies and T is a tableau (τ a dependency),
then chasing T (τ) by � yields a unique finite result, denoted chase(T ,�) (chase(τ,�)).

Logical implication of (full or embedded) dependencies by sets of full dependencies
will now be characterized by a straightforward application of the techniques developed in
Section 8.4 (see Exercise 10.8). A dependency τ is trivial if

(a) τ is an egd (T , x = x); or

(b) τ is a tgd (T , T ′) and there is a substitution θ for T ′ such that θ(T ′)⊆ T and θ

is the identity on var(T ) ∩ var(T ′).

Note that if τ is a full tgd, then (b) simply says that T ′ ⊆ T .
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A dependency τ is a tautology for finite (unrestricted) instances if each finite (unre-
stricted) instance of appropriate type satisfies τ—that is, if ∅ |=fin τ (∅ |=unr τ ). It is easily
verified that a dependency is a tautology iff it is trivial.

The following now provides a simple test for implication by full typed dependencies:

Theorem 10.2.2 Let � be a set of full typed dependencies and τ a typed dependency.
Then � |= τ iff chase(τ,�) is trivial.

Recall that the chase relies on a total order ≤ on var. For egd (T , x = y) we assume
that x < y and that these are the least and second to least variables appearing in the tableau;
and for full tgd (T , t), t (A) is least in T (A) for each attribute A. Using this convention, we
can obtain the following:

Corollary 10.2.3 Let � be a set of full typed dependencies.

(a) If τ = (T , x = y) is a typed egd, then � |= τ iff x and y are identical or y �∈
var(chase(T ,�)).

(b) If τ = (T , t) is a full typed tgd, then � |= τ iff t ∈ chase(T ,�).

Using the preceding results, it is straightforward to develop a deterministic exponential
time algorithm for testing implication of full dependencies. It is also known that for both
the typed and untyped cases, implication is complete in exptime. (Note that, in contrast,
logical implication for arbitrary sets of initially extended Bernays-Schöfinkel sentences is
known to be complete in nondeterministic exptime.)

Dependencies and Views

On a bit of a tangent, we now apply the chase to characterize the interaction of full
dependencies and user views. Let R = {R1, . . . , Rn} be a database schema, where Rj has
associated set �j of full dependencies for j ∈ [1, n]. Set � = {Ri : σ | σ ∈�i}. Note that
the elements of � are tagged by the relation name they refer to. Suppose that a view is
defined by algebraic expression E : R → S[V ]. It is natural to ask what dependencies will
hold in the view. Formally, we say that R : � implies E : σ , denoted R : � |= E : σ , if E(I)
satisfies σ for each I that satisfies �. The notion of R : � |= E : � for a set � is defined in
the natural manner.

To illustrate these notions in a simple setting, we state the following easily verified
result (see Exercise 10.10).

Proposition 10.2.4 Let (R[U ], �) be a relation schema where � is a set of fd’s and
mvd’s, and let V ⊆ U . Then

(a) R : � |= [πV (R)] : X→ A iff � |=X→ A and XA⊆ V .

(b) R : � |= [πV (R)] : X→→ Y iff � |=X→→ Z for some X ⊆ V and Y = Z ∩ V .

Given a database schema R, a family � of tagged full dependencies over R, a view
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expression E mapping R to S[V ], and a full dependency γ , is it decidable whether
R : � |= E : γ ? If E ranges over the full relational algebra, the answer is no, even if the
only dependencies considered are fd’s.

Theorem 10.2.5 It is undecidable, given database schema R, tagged fd’s �, algebra
expression E : R → S and fd σ over S, whether R : � |= E : σ .

Proof Let R = {R[U ], S[U ]}, σ = R : ∅→ U and � = {σ }. Given two algebra expres-
sions E1, E2 : S→ R, consider

E = R ∪ [E1(S)− E2(S)] ∪ [E2(S)− E1(S)]

Then R : � |= E : σ iff E1 ≡ E2. This is undecidable by Corollary 6.3.2.

In contrast, we now present a decision procedure, based on the chase, for inferring
view dependencies when the view is defined using the SPCU algebra.

Theorem 10.2.6 It is decidable whether R : � |= E : γ , if E is an SPCU query and
� ∪ {γ } is a set of (tagged) full dependencies.

Crux We prove the result for SPC queries that do not involve constants, and leave the
extension to include union and constants for the reader (Exercise 10.12).

Let E : R → S[V ] be an SPC expression, where S �∈ R. Recall from Chapter 4 (The-
orem 4.4.8; see also Exercise 4.18) that for each such expression E there is a tableau
mapping τE = (T, t) equivalent to E.

Assume now that � is a set of full dependencies and γ a full tgd. (The case where γ is
an egd is left for the reader.) Let the tgd γ over S be expressed as the tableau (W,w). Create
a new free instance Z out of (T, t) and W as follows: For each tuple u ∈W , set Tu = ν(T)
where valuation ν maps t to u, and maps all other variables in T to new distinct variables.
Set Z= ∪u∈WTu. It can now be verified that R : � |= E : γ iff w ∈ E(chase(Z, �)).

In the case where� ∪ {γ } is a set of fd’s and mvd’s and the view is defined by an SPCU
expression, testing the implication of a view dependency can be done in polynomial time,
if jd’s are involved the problem is np-complete, and if full dependencies are considered the
problem is exptime-complete.

Recall from Section 8.4 that a satisfaction family is a family sat(R, �) for some set �
of dependencies. Suppose now that SPC expression E : R[U ]→ S[V ] is given, and that �
is a set of full dependencies over R. Theorem 10.2.6, suitably generalized, shows that the
family � of full dependencies implied by � for view E is recursive. This raises the natural
question: Does E(sat(R,�))= sat(�), that is, does � completely characterize the image
of sat(R,�) under E? The affirmative answer to this question is stated next. This result
follows from the proof of Theorem 10.2.6 (see Exercise 10.13).
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Theorem 10.2.7 If � is a set of full dependencies over R and E : R → S is an SPC
expression without constants, then there is a set � of full dependencies over S such that
E(sat(R, �))= sat(S, �).

Suppose now that E : R[U ]→ S[V ] is given, and � is a finite set of dependencies.
Can a finite set � be found such that E(sat(R,�))= sat(S, �)? Even in the case where
E is a simple projection and � is a set of fd’s, the answer to this question is sometimes
negative (Exercise 10.11c).

Chasing with Embedded Dependencies

We now turn to the case of (embedded) dependencies. From Theorem 10.1.2(b), it is
apparent that we cannot hope to generalize Theorem 10.2.2 to obtain a decision procedure
for (finite or unrestricted) implication of dependencies. As initially discussed in Chapter 9,
the chase need not terminate if dependencies are used. All is not lost, however, because we
are able to use the chase to obtain a proof procedure for testing unrestricted implication of
a dependency by a set of dependencies.

For nonfull tgd’s, we shall use the following rule. We present the rule as it applies to
tableaux, but it can also be used on dependencies.

tgd rule: Let T be a tableau, and let σ = (S, S′) be a tgd. Suppose that there is a valuation
θ for S that embeds S into T , but no extension θ ′ to var(S) ∪ var(S′) of θ such that
θ ′(S′)⊆ T . In this case σ can be applied to T .

Let θ1, . . . , θn be a list of all valuations having this property. For each i ∈ [1, n],
(nondeterministically) choose a distinct extension, i.e., an extension θ ′i to var(S) ∪
var(S′) of θi such that each variable in var(S′) − var(S) is assigned a distinct new
variable greater than all variables in T . (The same variable is not chosen in two
extensions θ ′i , θ

′
j , i �= j .)

The result of applying σ to T is T ∪ {θ ′i (S′) | i ∈ [1, n]}.
This rule is nondeterministic because variables not occurring in T are chosen for the

existentially quantified variables of σ . We assume that some fixed mechanism is used for
selecting these variables when given T , (S, S′), and θ .

The notion of a chasing sequence T = T1, T2, . . . of a tableau (or dependency) by a
set of dependencies is now defined in the obvious manner. Clearly, this sequence may be
infinite.

Example 10.2.8 Let � = {τ1, τ2, τ3}, where
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Figure 10.3: Parts of a chasing sequence

We show here only the relevant variables of τ1, τ2, and τ3; all other variables are
assumed to be distinct. Here τ3 ≡ B→D.

In Fig. 10.3, we show some stages of a chasing sequence that demonstrates that
� |=unr A→D. To do that, the chase begins with the tableau {〈x1, x2, x3, x4〉, 〈x1, x5, x6,

x7〉}. Figure 10.3 shows the results of applying τ1, τ3, τ2, τ3 in turn (left to right). This
sequence implies that � |=unr A→D, because variables x4 and x7 are identified.

Consider now the typed tgd’s:
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The chasing sequence of Fig. 10.3 also implies that � |=unr τ4, because (x10, x2, x6,

x4) is in the second tableau. On the other hand, we now argue that � �|=unr τ5. Consider
the chasing sequence beginning as the one shown in Fig. 10.3, and continuing by applying
the sequence τ1, τ3, τ2, τ3 repeatedly. It can be shown that this chasing sequence will not
terminate and that (x1, x2, x6, v) does not occur in the resulting infinite sequence for any
variable v (see Exercise 10.16). It follows that � �|=unr τ5; in particular, the infinite result
of the chasing sequence is a counterexample to this implication. On the other hand, this
chasing sequence does not alone provide any information about whether � |=fin τ5. It can
be shown that this also fails.

To ensure that all relevant dependencies have a chance to influence a chasing sequence,
we focus on chasing sequences that satisfy the following conditions:

(1) Whenever an egd is applied, it is applied repeatedly until it is no longer
applicable.

(2) No dependency is “starved” (i.e., each dependency that is applicable infinitely
often is applied infinitely often).

Even if these conditions are satisfied, it is possible to have two chasing sequences of a
tableau T by typed dependencies, where one is finite and the other infinite (see Exer-
cise 10.14).

Now consider an infinite chasing sequence T1 = T , T2, . . . . Let us denote it by T ,�.
Because egd’s may be applied arbitrarily late in T ,�, for each n, tuples of Tn may be
modified as the result of later applications of egd’s. Thus we cannot simply take the union
of some tail Tn, Tn+1, . . . to obtain the result of the chase. As an alternative, for the chasing
sequence T ,� = T1, T2, . . . , we define

chase(T ,�)= {u | ∃n ∀m> n(u ∈ Tm)}.

This is nonempty because (1) the “new” variables introduced by the tgd rule are always
greater than variables already present; and (2) when the egd rule is applied, the newer
variable is replaced by the older one.

By generalizing the techniques developed, it is easily seen that the (possibly infinite)
resulting tableau satisfies all dependencies in�. More generally, let� be a set of dependen-
cies and σ a dependency. Then one can show that � |=unr σ iff for some chasing sequence
σ,� of σ using �, chase(σ,�) is trivial. Furthermore, it can be shown that

• if for some chasing sequence σ,� of σ using �, chase(σ,�) is trivial, then it is so
for all chasing sequences of σ using �; and

• for each chasing sequence σ,� = T1, . . . , Tn, . . . of σ using�, chase(σ,�) is trivial
iff Ti is trivial for some i.

This shows that, for practical purposes, it suffices to generate some chasing sequence of σ
using � and stop as soon as some tableau in the sequence becomes trivial.



226 A Larger Perspective

10.3 Axiomatization

A variety of axiomatizations have been developed for the family of dependencies and for
subclasses such as the full typed tgd’s. In view of Theorem 10.1.2, sound and complete
recursively enumerable axiomatizations do not exist for finite implication of dependencies.
This section presents an axiomatization for the family of full typed tgd’s and typed egd’s
(which is sound and complete for both finite and unrestricted implication). A generalization
to the embedded case (for unrestricted implication) has also been developed (see Exercise
10.21). The axiomatization presented here is closely related to the chase. In the next
section, a very different kind of axiomatization for typed dependencies is discussed.

We now focus on the full typed dependencies (i.e., on typed egd’s and full typed
tgd’s). The development begins with the introduction of a technical tool for forming the
composition of tableaux queries. The axiomatization then follows.

Composition of Typed Tableaux

Suppose that τ = (T , t) and σ = (S, s) are two full typed tableau queries over relation
schema R. It is natural to ask whether there is a tableau query τ • σ corresponding to the
composition of τ followed by σ—that is, with the property that for each instance I over R,

(τ • σ)(I )= σ(τ(I ))

and, if so, whether there is a simple way to construct it. We now provide an affirmative
answer to both questions. The syntactic composition of full typed tableau mappings will
be a valuable tool for combining pairs of full typed tgd’s in the axiomatization presented
shortly.

Let T = {t1, . . . , tn} and S = {s1, . . . , sm}. Suppose that tuple w is in σ(τ(I )). Then
there is an embedding ν of s1, . . . , sm into τ(I ) such that ν(s)= w. It follows that for each
j ∈ [1,m] there is an embedding µj of T into I , with µj(t)= ν(sj). This suggests that the
tableau of τ • σ should have mn tuples, with a block of n tuples for each sj .

To be more precise, for each j ∈ [1,m], let Tsj be θj(T ), where θj is a substitution that
maps t (A) to sj(A) for each attribute A of R and maps each other variable of T to a new,
distinct variable not used elsewhere in the construction. Now set

[S](T , t)≡ ∪{Tsj | j ∈ [1,m]} and τ • σ ≡ ([S](T , t), s).

The following is now easily verified (see Exercise 10.18):

Proposition 10.3.1 For full typed tableau queries τ and σ over R, and for each instance
I of R, τ • σ(I)= σ(τ(I )).

Example 10.3.2 The following table shows two full typed tableau queries and their
composition.
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It is straightforward to verify that the syntactic operation of composition is associative.
Suppose that τ and σ are full typed tableau queries. It can be shown by simple chasing

arguments that {τ, σ } and {τ • σ } are equivalent as sets of dependencies. It follows that full
typed tgd’s are closed under finite conjunction, in the sense that each finite set of full typed
tgd’s over a relation schema R is equivalent to a single full typed tgd. This property does
not hold in the embedded case (see Exercise 10.20).

An Axiomatization for Full Typed Dependencies

For full typed tgd’s, τ = (T , t) and σ = (S, s), we say that τ embeds into σ denoted
τ ↪→ σ , if there is a substitution ν such that ν(T )⊆ S and ν(t)= s. Recall from Chapter 4
that τ ⊇ σ (considered as tableau queries) iff τ ↪→ σ . As a result we have that if τ ↪→ σ ,
then τ |= σ , although the converse does not necessarily hold. Analogously, for A-egd’s
τ = (T , x = y) and σ = (S, v = w), we define τ ↪→ σ if there is a substitution ν such that
ν(T )⊆ S, and ν({x, y})= {v,w}. Again, if τ ↪→ σ , then τ |= σ .

We now list the axioms for full typed tgd’s:

FTtgd1: (triviality) For each free tuple t without constants, ({t}, t).
FTtgd2: (embedding) If τ and τ ↪→ σ , then σ .

FTtgd3: (composition) If τ and σ , then τ • σ .

The following rules focus exclusively on typed egd’s:

Tegd1: (triviality) If x ∈ var(T ), then (T , x = x).

Tegd2: (embedding) If τ and τ ↪→ σ , then σ .

The final rules combining egd’s and full typed tgd’s use the following notation. Let
R[U ] be a relation schema. For A ∈ U , A denotes U − {A}. Given typed A-egd τ =
(T , x = y) over R, define free tuples ux, uy such that ux(A)= x, uy(A)= y and ux[A]=
uy[A] consists of distinct variables not occurring in T . Define two full typed tgd’s τx =
(T ∪ {uy}, ux) and τy = (T ∪ {ux}, uy).
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FTD1: (conversion) If τ = (T , x = y), then τx and τy.

FTD2: (composition) If (T , t) and (S, x = y), then ([S](T , t), x = y).

We now have the following:

Theorem 10.3.3 The set {FTtgd1, FTtgd2, FTtgd3, Tegd1, Tegd2, FTD1, FTD2}
is sound and complete for (finite and unrestricted) logical implication of full typed
dependencies.

Crux Soundness is easily verified. We illustrate completeness by showing that the FTtgd
rules are complete for tgd’s. Suppose that � |= τ = (T , t), where � is a set of full typed
tgd’s and (T , t) is full and typed. By Theorem 10.2.2 there is a chasing sequence of T by
� yielding T ′ with t ∈ T ′. Let σ1, . . . , σn (n ≥ 0) be the sequence of elements of � used
in the chasing sequence. It follows that t ∈ σn(. . . (σ1(T ) . . .), and by Proposition 10.3.1,
t ∈ (σ1 • · · · • σn)(T ). This implies that (σ1 • · · · • σn) ↪→ (T , t). A proof of τ from � is
now obtained by starting with σ1 (or ({s}, s) if n= 0), followed by n− 1 applications of
FTtgd3 and one application of FTtgd2 (see Exercise (10.18b).

The preceding techniques and the chase can be used to develop an axiomatization of
unrestricted implication for the family of all typed dependencies.

10.4 An Algebraic Perspective

This section develops a very different paradigm for specifying dependencies based on the
use of algebraic expressions. Surprisingly, the class of dependencies formed is equivalent to
the class of typed dependencies. We also present an axiomatization that is rooted primarily
in algebraic properties rather than chasing and tableau manipulations.

We begin with examples that motivate and illustrate this approach.

Example 10.4.1 Let R[ABCD] be a relation schema. Consider the tgd τ of Fig. 10.4 and
the algebraic expression

πAC(πAB(R) �� πBC(R))⊆ πAC(R).

It is straightforward to verify that for each instance I over ABCD,

I |= τ iff πAC(πAB(I ) �� πBC(I ))⊆ πAC(I ).

Now consider dependency σ . One can similarly verify that for each instance I over
ABCD,

I |= σ iff πAC(πAB(I ) �� πBC(I ))⊆ πAC(πAD(I ) �� πCD(I )).
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Figure 10.4: Dependencies of Example 10.4.1

The observation of this example can be generalized in the following way. A project-
join (PJ) expression is an algebraic expression over a single relation schema using only
projection and natural join. We describe next a natural recursive algorithm for translating
PJ expressions into tableau queries (see Exercise 10.23). (This algorithm is also implicit in
the equivalence proofs of Chapter 4.)

Algorithm 10.4.2

Input: a PJ expression E over relation schema R[A1, . . . , An]

Output: a tableau query (T , t) equivalent to E

Basis: If E is simply R, then return ({〈x1, . . . , xn〉}, 〈x1, . . . , xn〉).
Inductive steps:

1. If E is πX(q) and the tableau query of q is (T , t), then return (T , πX(t)).
2. Suppose E is q1 �� q2 and the tableau query of qi is (Ti, ti) for i ∈ [1, 2].

Let X be the intersection of the output sorts of q1 and q2. Assume without
loss of generality that the two tableaux use distinct variables except that
t1(A)= t2(A) for A ∈X. Then return (T1 ∪ T2, t1 �� t2).

Suppose now that (T , T ′) is a typed dependency with the property that for some free
tuple t , (T , t) is the tableau associated by this algorithm with PJ expression E, and (T ′, t) is
the tableau associated with PJ expression E′. Suppose also that the only variables common
to T and T ′ are those in t . Then for each instance I , I |= (T , T ′) iff E(I)⊆ E′(I ).

This raises three natural questions: (1) Is the family of PJ inclusions equivalent to the
set of typed tgd’s? (2) If not, can this paradigm be extended to capture all typed tgd’s? (3)
Can this paradigm be extended to capture typed egd’s as well as tgd’s?

The answer to the first question is no (see Exercise 10.24).
The answer to the second and third questions is yes. This relies on the notion

of extended relations and extended project-join expressions. Let R[A1, . . . , An] be a
relation schema. For each i ∈ [1, n], we suppose that there is an infinite set of at-
tributes A1

i , A
2
i , . . . , called copies of Ai. The extended schema of R is the schema

R[A1
1, . . . , A

1
n, A

2
1, . . . , A

2
n, . . .]. For an instance I of R, the extended instance of R corre-

sponding to I , denoted I , has one “tuple” u for each tuple u ∈ I , where u(Aj

i )= u(Ai) for
each i ∈ [1, n] and j > 0.

An extended project-join expression over R is a PJ expression over R such that a
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Figure 10.5: tgd and egd of Example 10.4.3

projection operator is applied first to each occurrence ofR. (This ensures that the evaluation
and the result of such expressions involve only finite objects.) Given two extended PJ
expressions E and E′ with the same target sort, and instance I over R, E(I) ⊆e E

′(I )
denotes E(I)⊆ E′(I ).

An algebraic dependency is a syntactic expression of the form E ⊆e E
′, where E and

E′ are extended PJ expressions over a relation schema R with the same target sort. An
instance I over R satisfies E ⊆e E

′ if E(I)⊆e E
′(I )—that is, if E(I)⊆ E′(I ).

This is illustrated next.

Example 10.4.3 Consider the dependency τ of Fig. 10.5. Let

E = πACD1(R) �� πC1D1(R) �� πA1C1D(R).

Here we use A,A1, . . . to denote different copies the attribute A, etc.
It can be shown that, for each instance I over ABCD, I |= τ iff E1(I )⊆e E2(I ), where

E1 = πACD(E)

E2 = πACD(πAB1(R) �� πB1CD(R)).

(See Exercise 10.25).
Consider now the functional dependency A→ BC over ABCD. This is equivalent to

πABC(R) �� πAB1C1(R)⊆e πABCB1C1(R).
Finally, consider σ of Fig. 10.5. This is equivalent to F1 ⊆e F2, where

F1 = πAA1(E)

F2 = πAA1(R).

We next see that algebraic dependencies correspond precisely to typed dependencies.

Theorem 10.4.4 For each algebraic dependency, there is an equivalent typed depen-
dency, and for each typed dependency, there is an equivalent algebraic dependency.
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Crux Let R[A1, . . . , An] be a relation schema, and let E ⊆e E
′ be an algebraic depen-

dency over R, where E and E′ have target sort X. Without loss of generality, we can
assume that there is k such that the sets of attributes involved in E and E′ are contained
in Û = {A1

1, . . . , A
1
n, . . . , A

k
1, . . . , A

k
n}. Using Algorithm 10.4.2, construct tableau queries

τ = (T , t) and τ ′ = (T ′, t ′) over Û corresponding to E and E′. We assume without loss of
generality that τ and τ ′ do not share any variables except that t (A)= t ′(A) for each A ∈X.

Consider T (over Û ). For each tuple s ∈ T and j ∈ [1, k],

• construct an atom R(x1, . . . , xn), where xi = s(A
j

i ) for each i ∈ [1, n];

• construct atoms s(Aj

i )= s(A
j ′
i ) for each i∈ [1, n] and j, j ′ satisfying

1≤ j < j ′ ≤ k.

Let ϕ(x1, . . . , xp) be the conjunction of all atoms obtained from τ in this manner. Let
ψ(y1, . . . , yq) be constructed analogously from τ ′. It can now be shown (Exercise 10.26)
that E ⊆e E

′ is equivalent to the typed dependency

∀x1 . . . xp(ϕ(x1, . . . , xp)→∃z1 . . . zrψ(y1, . . . , yq)),

where z1, . . . , zr is the set of variables in {y1, . . . , yq} − {x1, . . . , xp}.
For the converse, we generalize the technique used in Example 10.4.3. For each at-

tribute A, one distinct copy of A is used for each variable occurring in the A column.

An Axiomatization for Algebraic Dependencies

Figure 10.6 shows a family of inference rules for algebraic dependencies. Each of these
rules stems from an algebraic property of join and project, and only the last explicitly uses
a property of extended instances. (It is assumed here that all expressions are well formed.)

The use of these rules to infer dependencies is considered in Exercises 10.31, and
10.32.

It can be shown that:

Theorem 10.4.5 The family {AD1, . . . , AD8} is sound and complete for inferring
unrestricted implication of algebraic dependencies.

To conclude this discussion of the algebraic perspective on dependencies, we consider
a new operation, direct product, and the important notion of faithfulness.

Faithfulness and Armstrong Relations

We show now that sets of typed dependencies have Armstrong relations,1 although these
may sometimes be infinite. To accomplish this, we first introduce a new way to combine
instances and an important property of it.

1 Recall that given a set � of dependencies over some schema R, an Armstrong relation for � is an
instance I over R that satisfies � and violates every dependency not implied by �.
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AD1: (Idempotency of Projection)
(a) πX(πYE)=e πXE

(b) πsort(E)E =e E

AD2: (Idempotency of Join)
(a) E �� πXE =e E

(b) πsort(E)(E �� E′)⊆e E

AD3: (Monotonicity of Projection)
If E ⊆e E

′ then πXE ⊆e πXE
′

AD4: (Monotonicity of Join)
If E ⊆e E

′, then E �� E′′ ⊆e E
′ �� E′′

AD5: (Commutativity of Join)
E �� E′ =e E

′ �� E
AD6: (Associativity of Join)

(E �� E′) �� E′′ =e E �� (E′ �� E′′)
AD7: (Distributivity of Projection over Join)

Suppose that X ⊆ sort(E) and Y ⊆ sort(E′). Then
(a) πX∪Y (E �� E′)⊆e πX∪Y (E �� πYE′).
(b) If sort(E) ∩ sort(E′)⊆ Y , then equality holds in (a).

AD8: (Extension)
If X ⊆ sort(R) and A,A′ are copies of the same attribute, then
πAA′R �� πAXR =e πAA′XR.

Figure 10.6: Algebraic dependency axioms

Let R be a relation schema of arity n. We blur our notation and use elements of
dom × dom as if they were elements of dom. Given tuples u = 〈x1, . . . , xn〉 and v =
〈y1, . . . , yn〉, we define the direct product of u and v to be

u⊗ v = 〈(x1, y1), . . . , (xn, yn)〉.

The direct product of two instances I, J over R is

I ⊗ J = {u⊗ v | u ∈ I, v ∈ J }.

This is generalized to form k-ary direct product instances for each finite k. Furthermore,
if J is a (finite or infinite) index set and {Ij | j ∈ J } is a family of instances over R, then
⊗{Ij | j ∈ J } denotes the (possibly infinite) direct product of this family of instances.

A dependency σ is faithful if for each family {Ij | j ∈ J } of nonempty instances,

⊗{Ij | j ∈ J } |= σ if and only if ∀j ∈ J , Ij |= σ.

(The restriction that the instances be nonempty is important—if this were omitted then no
nontrivial dependency would be faithful.)

The following holds because the ⊗ operator commutes with project, join, and “exten-
sion” (see Exercise 10.29).
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Proposition 10.4.6 The family of typed dependencies is faithful.

We can now prove that each set of typed dependencies has an Armstrong relation.

Theorem 10.4.7 Let � be a set of typed dependencies over relation R. Then there is a
(possibly infinite) instance I� such that for each typed dependency σ over R, I� |= σ iff
� |=unr σ .

Proof Let � be the set of typed dependencies over R not in �∗. For each γ ∈ �, let
Iγ be a nonempty instance that satisfies � but not γ . Then ⊗{Iγ | γ ∈ �} is the desired
relation.

This result cannot be strengthened to yield finite Armstrong relations because one can
exhibit a finite set of typed tgd’s with no finite Armstrong relation.
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cannot be characterized by any finite set of full dependencies (see Exercise 10.11c,d).
That investigation is extended in [Hul85], where it is shown that if � is a family of
fd’s over U and V ⊆ U , and if πV (sat(U,�)) �= sat(V , �) for any set � of fd’s, then
πV (sat(U,�)) �= sat(V , �) for any finite set � of full dependencies.

Another primary thrust in the study of dependencies has been the search for axiom-
atizations for various classes of dependencies. The axiomatization presented here for full
typed dependencies is due to [BV84a], which also provides an axiomatization for the em-
bedded case. The axiomatization for algebraic dependencies is from [YP82]. An axiom-
atization for template dependencies is given in [SU82] (see Exercise 10.22). Research on
axiomatizations for jd’s is described in the Bibliographic Notes of Chapter 8.

The direct product construction is from [Fag82b]. Proposition 10.4.6 is due to
[Fag82b], and the proof presented here is from [YP82]. A finite set of tgd’s with no fi-
nite Armstrong relation is exhibited in [FUMY83]. The direct product has also been used
in connection with tableau mappings and dependencies [FUMY83] (see Exercise 10.19).
The direct product has been studied in mathematical logic; the notion of (upward) faithful
presented here (see Exercise 10.28) is equivalent to the notion of “preservation under direct
product” found there (see, e.g., [CK73]); and the notion of downward faithful is related to,
but distinct from, the notion of “preservation under direct factors.”

Reference [MV86] extends the work on direct product by characterizing the expressive
power of different families of dependencies in terms of algebraic properties satisfied by
families of instances definable using them.

Exercises

Exercise 10.1

(a) Show that for each first-order sentence of the form (∗) of Section 10.1, there exists
an equivalent finite set of dependencies.

(b) Show that each dependency is equivalent to a finite set of egd’s and tgd’s.

Exercise 10.2 Consider the tableaux in Example 10.3.2. Give σ • σ . Compare it (as a map-
ping) to σ . Give σ • τ . Compare it (as a mapping) to τ • σ .

Exercise 10.3 [DG79] Let ϕ be a first-order sentence with equality but no function symbols
that is in prenex normal form and has quantifier structure ∃∗∀∗. Prove that ϕ has an unrestricted
model iff it has a finite model.

Exercise 10.4 This exercise concerns the dependencies of Fig. 10.2.

(a) Show that (S, x = z) and (S ′, x = z) are equivalent.

(b) Show that (T , t) and (T ′, t) are equivalent, but that (T , t) ⊂ (T ′, t) as tableau
queries.

Exercise 10.5 Let R[ABC] be a relation scheme. We construct a family of egd’s over R as
follows. For n≥ 0, let

Tn = {〈xi, yi, z2i〉, 〈xi, yi+1, z2i+1〉 | i ∈ [0, n]}

and set τn = (Tn, z0 = z2n+1). Note that τ0 ≡ A→ C.
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(a) Prove that as egd’s, τi ≡ τj for all i, j > 0.

(b) Prove that τ0 |= τ1, but not vice versa.

Exercise 10.6

(a) [FUMY83] Prove that there are exactly three distinct (up to equivalence) full typed
single-head tgd’s over a binary relation. Hint: See Exercise 10.4.

(b) Prove that there is no set of single-head tgd’s that is equivalent to the typed tgd
(T1, T2) of Fig. 10.2.

(c) Exhibit an infinite chain τ1, τ2, . . . of typed tgd’s over a binary relation where each
is strictly weaker than the previous (i.e., such that τi |= τi+1 but τi+1 �|= τi for each
i ≥ 1).

0Exercise 10.7 [FUMY83] Let U = {A1, . . . , An} be a set of attributes.

(a) Consider the full typed single-head tgd (full template dependency) τstrongest =
({t1, . . . , tn}, t), where ti(Ai)= t (Ai) for i ∈ [1, n], and all other variables used are
distinct. Prove that τstrongest is the “strongest” template dependency for U , in the
sense that for each (not necessarily full) template dependency τ overU , τstrongest |= τ .

(b) Let τweakest be the template dependency (S, s), where s(Ai) = xi for i ∈ [1, n] and
where S includes all tuples s ′ over U that satisfy (1) s ′(Ai)= xi or yi for i ∈ [1, n],
and (2) s ′(Ai) �= xi for at least one i ∈ [1, n]. Prove that τweakest is the “weakest” full
template dependency U , in the sense that for each nontrivial full template depen-
dency τ over U , τ |= τweakest.

(c) For V ⊆ U , a template dependency over U is V -partial if it can be expressed as a
tableau (T , t), where t is over V . For V ⊆ U exhibit a “weakest” V -partial template
dependency.

Exercise 10.8 [BV84c] Prove Theorems 10.2.1 and 10.2.2.

Exercise 10.9 Prove that the triviality problem for typed tgd’s is np-complete. Hint: Use a
reduction from tableau containment (Theorem 6.2.3).

Exercise 10.10

(a) Prove Proposition 10.2.4.

(b) Develop an analogous result for the binary natural join.

Exercise 10.11 Let R[ABCDE] and S[ABCD] be relation schemas, and let V = ABCD. Con-
sider � = {A→ E,B→ E,CE →D}.

(a) Describe the set � of fd’s implied by � on πV (R).

(b) [GZ82] Show that sat(πV (R,�)) �= sat(S, �). Hint: Consider the instance J =
{〈a, b1,

c, d1〉, 〈a, b, c1, d2〉, 〈a1, b, c, d3〉} over S.

0 (c) [Hul84] Show that there is no finite set ϒ of full dependencies over S such that
πV (sat(R,�))= sat(S,ϒ) Hint: Say that a satisfaction family F over R has rank
n if F = sat(R, �) for some � where the tableau in each dependency of � has ≤ n

elements. Suppose that πV (sat(R,�)) has rank n. Exhibit an instance J over V with
n+ 1 elements such that (a) J �∈ πV (sat(R,�)), and (b) J satisfies each dependency
σ that is implied for πV (R) by �, and that has ≤ n elements in its tableau. Conclude
that J ∈ sat(V , �), a contradiction.
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0 (d) [Hul84] Develop a result for mvd’s analogous to part (c).

Exercise 10.12 [KP82] Complete the proof of Theorem 10.2.6 for the case where � is a set of
full dependencies and γ is a full tgd. Show how to extend that proof (a) to the case where γ is
an egd; (b) to include union; and (c) to permit constants in the expression E. Hint: For (a), use
the technique of Theorem 8.4.12; for (b) use union of tableaux, but permitting multiple output
rows; and for (c) recall Exercise 8.27b.

Exercise 10.13 [Fag82b] Prove Theorem 10.2.7.

Exercise 10.14 Exhibit a typed tgd τ and a set � of typed dependencies such that � |= τ , and
there are two chasing sequences of τ by �, both of which satisfy conditions (1) and (2), in the
definition of chasing for embedded dependencies in Section 10.2, where one sequence is finite
and the other is infinite.

Exercise 10.15 Consider these dependencies:

A B C

x
y

z
z

x

τ2

y

τ3

A B C

x y
x z

τ1

y z

AC → B

(a) Starting with input T = {〈1, 2, 3〉, 〈1, 4, 5〉}, perform four steps of the chase using
these dependencies.

(b) Prove that {τ1, τ2, τ3} �|=unr A→ B.

0Exercise 10.16

(a) Prove that the chasing sequence of Example 10.2.8 does not terminate; then use this
sequence to verify that � �|=unr τ5.

(b) Show that � �|=fin τ5.

(c) Exhibit a set �′ of dependencies and a dependency σ ′ such that the chasing sequence
of σ ′ with �′ is infinite, and such that �′ �|=unr σ

′ but �′ |=fin σ
′.

♠Exercise 10.17 [BV84c] Suppose that T ,� is a chasing sequence. Prove that chase(T ,�)

satisfies �.

Exercise 10.18 [BV84a] (a) Prove Proposition 10.3.1. (b) Complete the proof of Theo-
rem 10.3.3.

Exercise 10.19 [FUMY83] This exercise uses the direct product construction for combining
full typed tableau mappings. Let R be a fixed relation schema of arity n. The direct product
of free tuples and tableaux is defined as for tuples and instances. Given two full typed tgd’s
τ = (T , t) and τ ′ = (T ′, t ′) over relation schema R, their direct product is

τ ⊗ τ ′ = (T ⊗ T ′, t ⊗ t ′).

(a) Let τ, σ be full typed single-head tgd’s over R. Prove that τ ⊗ σ is equivalent to
{τ, σ }.
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(b) Are τ ⊗ σ and τ • σ comparable as tableau queries under ⊆, and, if so, how?

(c) Show that the family of typed egd’s that have equality atoms referring to the same
column of R is closed under finite conjunction.

Exercise 10.20 [FUMY83]

(a) Let τ and τ ′ be typed tgd’s. Prove that τ |=unr τ
′ iff τ |=fin τ

′. Hint: Show that chasing
will terminate in this case.

(b) Prove that there is a pair τ, τ ′ of typed tgd’s for which there is no typed tgd τ ′′
equivalent to {τ, τ ′}. Hint: Assume that typed tgd’s were closed under conjunction in
this way. Use part (a).

0Exercise 10.21 [BV84a] State and prove an axiomatization theorem for the family of typed
dependencies.

Exercise 10.22 [SU82] Exhibit a set of axioms for template dependencies (i.e., typed single-
head tgd’s), and prove that it is sound and complete for unrestricted logical implication.

Exercise 10.23 Prove that Algorithm 10.4.2 is correct. (See Exercise 4.18a).

Exercise 10.24

(a) Consider the full typed tgd

τ = ({〈x, y ′〉, 〈x ′, y ′〉, 〈x ′, y〉}, 〈x, y〉).

Prove that there is no pair E,E′ of (nonextended) PJ expressions such that τ is
equivalent to E ⊆ E′ [i.e., such that I |= τ iff E(I)⊆ E′(I )].

(b) Let τ be as in Fig. 10.5. Prove that there is no pair E,E′ of (nonextended) PJ
expressions such that τ is equivalent to E ⊆ E′.

Exercise 10.25 In connection with Example 10.4.3,

(a) Prove that τ is equivalent to E1 ⊆e E2.

(b) Prove that A→ BC is equivalent to πABC(R) �� πAB1C1(R)⊆e πABCB1C1(R).

(c) Prove that σ is equivalent to F1 ⊆e F2.

0Exercise 10.26 Complete the proof of Theorem 10.4.4.

Exercise 10.27 An extended PJ expression E is shallow if it has the form πX(R) or the form
πX(πY1(R) �� · · · �� πYn(R)). An algebraic dependency E ⊆e E

′ is shallow if E and E′ are
shallow. Prove that every algebraic dependency is equivalent to a shallow one.

Exercise 10.28 [Fag82b] A dependency σ is upward faithful (with respect to direct products)
if, for each family of nonempty instances {Ij | j ∈ J },

∀j ∈ J , Ij |= σ implies ⊗ {Ij | j ∈ J } |= σ.

Analogously, σ is downward faithful if

⊗{Ij | j ∈ J } |= σ implies ∀j ∈ J , Ij |= σ.
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(a) Show that the constraint

∀x, y, y ′, z, z′(R(x, y, z) ∧ R(x, y ′, z′)→ (y = y ′ ∨ z= z′))

is downward faithful but not upward faithful.

(b) Show that the constraint

∀x, y, z(R(x, y) ∧ R(y, z)→ R(x, z))

is upward faithful but not downward faithful.

Exercise 10.29 [Fag82b, YP82] Prove Proposition 10.4.6.

Exercise 10.30 [Fag82b] The direct product operator ⊗ is extended to instances of database
schema R = {R1, . . . , Rn} by forming, for each i ∈ [1, n], a direct product of the relation
instances associated with Ri. Let R = {P [A],Q[A]} be a database schema. Show that the empty
set of typed dependencies over R has no Armstrong relation. Hint: Find typed dependencies
σ1, σ2 over R such that ∅ |= (σ1 ∨ σ2) but ∅ �|= σ1 and ∅ �|= σ2.

0Exercise 10.31 [YP82] Let R[ABCD] be a relation schema. The pseudo-transitivity rule for
multivalued dependencies (Chapter 8) implies, given A→→ B and B →→ C, that A→→ C.
Express this axiom in the paradigm of algebraic dependencies. Prove it using axioms {AD1,
. . . , AD7} (without using extended relations).

0Exercise 10.32 Infer the three axioms for fd’s from rules {A1, . . . , A8}.

Exercise 10.33 [YP82] Prove that {A1, . . . , A8} is sound.
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When the only tool you have is a hammer,
everything begins to look like a nail.

—Anonymous

Alice: Will we use a hammer for schema design?
Riccardo: Sure: decomposition, semantic modeling, . . .

Vittorio: And each provides nails to which the data must fit.
Sergio: The more intricate the hammer, the more intricate the nail.

We have discussed earlier applications of dependencies in connection with query
optimization (Section 8.4) and user views (Section 10.2). In this chapter, we briefly

consider how dependencies are used in connection with the design of relational database
schemas.

The problem of designing database schemas is complex and spans the areas of cog-
nitive science, knowledge representation, software practices, implementation issues, and
theoretical considerations. Due to the interaction of these many aspects (some of them in-
tegrally related to how people think and perceive the world), we can only expect a relatively
narrow and somewhat simplistic contribution from theoretical techniques. As a result, the
primary focus of this chapter is to introduce the kinds of formal tools that are used in the
design process; a broader discussion of how to use these tools in practice is not attempted.
The interested reader is referred to the Bibliographic Notes, which indicate where more
broad-based treatments of relational schema design can be found.

In the following discussion, designing a relational schema means coming up with a
“good” way of grouping the attributes of interest into tables, yielding a database schema.
The choice of a schema is guided by semantic information about the application data
provided by the designer. There are two main ways to do this, and each leads to a different
approach to schema design.

Semantic data model: In this approach (Section 11.1), the application data is first described
using a model with richer semantic constructs than relations. Such models are called
“semantic data models.” The schema in the richer model is then translated into a
relational schema. The hope is that the use of semantic constructs will naturally lead
to specifying good schemas.

Refinement of relational schema: This approach (Section 11.2) starts by specifying an
initial relational schema, augmented with dependencies (typically fd’s and mvd’s). The
design process uses the dependencies to improve the schema. But what is it that makes
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one schema better than another? This is captured by the notion of “normal form” for
relational schemas, a central notion in design theory.

Both of these approaches focus on the transformation of a schema S1 into a relational
schema S2. Speaking in broad terms, three criteria are used to evaluate the result of this
transformation:

(1) Preservation of data;

(2) Desirable properties of S2, typically described using normal forms; and

(3) Preservation of “meta-data” (i.e., information captured by schema and depen-
dencies).

Condition (1) requires that information not be lost when instances of S1 are represented in
S2. This is usually formalized by requiring that there be a “natural” mapping τ : Inst(S1)→
Inst(S2) that is one-to-one. As we shall see, the notion of “natural” can vary, depending on
the data model used for S1.

Criterion (2) has been the focus of considerable research, especially in connection with
the approach based on refining relational schemas. In this context, the notion of relational
schema is generalized to incorporate dependencies, as follows: A relation schema is a pair
(R,�), where R is a relation name and � is a set of dependencies over R. Similarly, a
database schema is a pair (R, �), where R is a database schema as before, and � is a set of
dependencies over R. Some of these may be tagged by a single relation (i.e., have the form
Rj : σ , where σ is a dependency over Rj ∈ R). Others, such as ind’s, may involve pairs
of relations. More generally, some dependencies might range over the full set of attributes
occurring in R. (This requires a generalization of the notion of dependency satisfaction,
which is discussed in Section 11.3.)

With this notation established, we return to criterion (2). In determining whether one
relational schema is better than another, the main factors that have been considered are
redundancy in the representation of data and update anomalies. Recall that these were
illustrated in Section 8.1, using the relations Movies and Showings. We concluded there
that certain schemas yielded undesirable behavior. This resulted from the nature of the
information contained in the database, as specified by a set of dependencies.

Although the dependencies are in some sense the cause of the problems, they also
suggest ways to eliminate them. For example, the fd

Movies: Title→ Director

suggests that the attribute Director is a characteristic of Title, so the two attributes be-
long together and can safely be represented in isolation from the other data. It should be
clear that one always needs some form of semantic information to guide schema design;
in the absence of such information, one cannot distinguish “good” schemas from “bad”
ones (except for trivial cases). As will be seen, the notion of normal form captures some
characteristics of “good” schemas by guaranteeing that certain kinds of redundancies and
update anomalies will not occur. It will also be seen that the semantic data model approach
to schema design can lead to relational schemas in normal form.
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In broad terms, the intuition behind criterion (3) is that properties of data captured by
schema S1 (e.g., functional or inclusion relationships) should also be captured by schema
S2. In the context of refining relational schemas, a precise meaning will be given for this
criterion in terms of “preservation” of dependencies. We shall see that there is a kind of
trade-off between criteria (2) and (3).

The approach of refining relational schemas typically makes a simplifying assump-
tion called the “pure universal relation assumption” (pure URA). Intuitively, this states that
the input schema S1 consists of a single relation schema, possibly with some dependen-
cies. Section 11.3 briefly considers this assumption in a more general light. In addition, the
“weak” URA is introduced, and the notions of dependency satisfaction and query interpre-
tation are extended to this context.

This chapter is more in the form of a survey than the previous chapters, for several
reasons. As noted earlier, more broad-based treatments of relational schema design may
be found elsewhere and require a variety of tools complementary to formal analysis. The
tools presented here can at best provide only part of the skeleton of a design methodology
for relational schemas. Normal forms and the universal relation assumption were active
research topics in the 1970s and early 1980s and generated a large body of results. Some
of that work is now considered somewhat unfashionable, primarily due to the emergence
of new data models. However, we mention these topics briefly because (1) they lead to
interesting theoretical issues, and (2) we are never secure from a change of fashion.

11.1 Semantic Data Models

In this section we introduce semantic data models and describe how they are used in rela-
tional database design. Semantic data models provide a framework for specifying database
schemas that is considerably richer than the relational model. In particular, semantic mod-
els are arguably closer than the relational model to ways that humans organize information
in their own thinking. The semantic data models are precursors of the recently emerging
object-oriented database models (presented in a more formal fashion in Chapter 21) and
are thus of interest in their own right.

As a vehicle for our discussion, we present a semantic data model, called loosely the
generic semantic model (GSM). (This is essentially a subset of the IFO model, one of the
first semantic models defined in a formal fashion.) We then illustrate how schemas from
this model can be translated into relational schemas. Our primary intention is to present
the basic flavor of the semantic data model approach to relational schema design and some
formal results that can be obtained. The presentation itself is somewhat informal so that the
notation does not become overly burdensome.

In many practical contexts, the semantic model used is the Entity-Relationship model
(ER model) or one of its many variants. The ER model is arguably the first semantic data
model that appeared in the literature. We use the GSM because it incorporates several
features of the semantic modeling literature not present in the ER model, and because the
GSM presents a style closer to object-oriented database models.
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GSM Schemas

Figure 11.1 shows the schema CINEMA-SEM from the GSM, which can be used to
represent information on movies and theaters. The major building blocks of such schemas
are abstract classes, attributes, complex value classes, and the ISA hierarchy; these will be
considered briefly in turn.

The schema of Fig. 11.1 shows five classes that hold abstract objects: Person, Direc-
tor, Actor, Movie, and Theater. These correspond to collections of similar objects in the
world. There are two kinds of abstract class: primary classes, shown using diamonds, and
subclasses shown using circles. This distinction will be clarified further when ISA relation-
ships are discussed.

Instances of semantic schemas are constructed from the usual printable classes (e.g.,
string, integer, float, etc.) and “abstract” classes. The printable classes correspond to (sub-
sets of) the domain dom used in the relational model. The printable classes are indicated
using squares; in Fig. 11.1 we have labeled these to indicate the kind of values that popu-
late them. Conceptually, the elements of an abstract class such as Person are actual persons
in the world; in the formal model internal representations for persons are used. These inter-
nal representations have come to be known as object identifiers (OIDs). Because they are
internal, it is usually assumed that OIDs cannot be presented explicitly to users, although
programming and query languages can use variables that hold OIDs. The notion of instance
will be defined more completely later and is illustrated in Example 11.1.1 and Fig. 11.2.

Attributes provide one mechanism for representing relationships between objects and
other objects or printable values; they are drawn using arrows. For example, the Person
class has attributes name and citizenship, which associate strings with each person object.
These are examples of single-valued attributes. (In this schema, all attributes are assumed
to be total.) Multivalued attributes are also allowed; these map each object to a set of
objects or printable values and are denoted using arrows with double heads. For example,
acts_in maps actors to the movies that they have acted in. It is common to permit inverse
constraints between pairs of attributes. For example, consider the relationship between
actors and movies. It can be represented using the multivalued attribute acts_in on Actor
or the multivalued attribute actors on Movie. In this schema, we assume that the attri-
butes acts_in and actors are constrained to be inverses of each other, in the sense that
m ∈ acts_in(a) iff a ∈ actor(m). A similar constraint is assumed between the attributes
associating movies with directors.

In the schema CINEMA-SEM, the Pariscope node is an example of a complex value
class. Members of the underlying class are triples whose coordinates are from the classes
Theater, Time, and Movie, respectively. In the GSM, each complex value is the result of
one application of the tuple construct. This is indicated using a node of the form ⊗, with
components indicated using dashed arrows. The components of each complex value can be
printable, abstract, or complex values. However, there cannot be a directed cycle in the set
of edges used to define the complex values. As suggested by the attribute price, a complex
value class may have attributes. Complex value classes can also serve as the range of an
attribute, as illustrated by the class Award.

Complex values are of independent interest and are discussed in some depth in Chap-
ter 20. Complex values generally include hierarchical structures built from a handful of
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Address PhoneName

Theater Time

Pariscope

Title

Citizen-
ship

Name

Person

Award

PrizeName

Movie Director

Acts_in

Actors

Price

Actor

Figure 11.1: The schema CINEMA-SEM in the Generic Semantic Model
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basic constructors, including tuple (as shown here) set, and sometimes others such as bag
and list. Rich complex value models are generally incorporated into object-oriented data
models and into some semantic data models. Some constructs for complex values, such as
set, cannot be simulated directly using the pure relational model (see Exercise 11.24).

The final building block of the GSM is the ISA relationship, which represents set
inclusion. In the example schema of Fig. 11.1, the ISA relationships are depicted by double-
shafted arrows and indicate that the set of Director is a subset of Person, and likewise
that Actor is a subset of Person. In addition to indicating set inclusion, ISA relationships
indicate a form of subtyping relationship, or inheritance. Specifically, if class B ISA class
A, then each attribute of A is also relevant (and defined for) elements of class B. In the
context of semantic models, this should be no surprise because the elements of B are
elements of A.

In the GSM, the graph induced by ISA relationships is a directed acyclic graph (DAG).
The root nodes are primary abstract classes (represented with diamonds), and all other
nodes are subclass nodes (represented with circles). Each subclass node has exactly one
primary node above it. Complex value classes cannot participate in ISA relationships.

In the GSM, the tuple and multivalued attribute constructs are somewhat redundant: A
multivalued attribute is easily simulated using a tuple construct. Such redundancy is typical
of semantic models: The emphasis is on allowing schemas that correspond closely to the
way that users think about an application. On a bit of a tangent, we also note that the tuple
construct of GSM is close to the relationship construct of the ER model.

GSM Instances

Let S be a GSM schema. It is assumed that a fixed (finite or infinite) domain is associated
to each printable class in S. We also assume a countably infinite set obj of OIDs.

An instance of S is a function I whose domain is the set of primary, subclass, and
complex value classes of S and the set of attributes of S. For primary class C, I(C) is a
finite set of OIDs, disjoint from I(C′) for each other primary class C′. For each subclass
D, I(D) is a set of OIDs, such that the inclusions indicated by the ISA relationships of S
are satisfied. For complex value class C with components D1, . . . , Dn, I(C) is a finite set
of tuples 〈d1, . . . , dn〉, where di ∈ I(Di) if Di is an abstract or complex value class, and di
is in the domain of Di if Di is a printable class. For a single-valued attribute f from C to
C′, I(f ) is a function from I(C) to I(C′) (or to the domain of C′, if C′ is printable). For a
multivalued attribute f from C to C′, I(f ) is a function from I(C) to finite subsets of I(C′)
(or the domain of C′, if C′ is printable). Given instance I, attribute f from C to C′, and
object o in I(C), we often write f (o) to denote [I(f )](o).

Example 11.1.1 Part of a very small instance I1 of CINEMA-SEM is shown in
Fig. 11.2. The values of complex value Award, the attributes award, address, and phone
are not shown. The symbols o1, o2, etc., denote OIDs.

Consider an instance I′ that is identical to I1, except that o2 is replaced by o8 ev-
erywhere. Because OIDs serve only as internal representations that cannot be accessed
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I1(Person)= name(o1)= Alice citizenship(o1)= Great Britain
{o1, o2, o3} name(o2)= Allen citizenship(o2)= United States

name(o3)= Keaton citizenship(o3)= United States

I1(Director)= {o2} directed(o2)= {o4, o5}

I1(Actor)= {o2, o3} acts_in(o2)= {o4, o5}
acts_in(o3)= {o5}

I1(Movie)= {o4, o5} title(o4)= Take the Money
and Run

title(o5)= Annie Hall
director(o4)= o2 actors(o4)= {o2}
director(o5)= o2 actors(o5)= {o2, o3}

I1(Theater)= {o6} name(o6)= Le Champo

I1(Pariscope)= price(〈o6, 20:00, o4〉)= 30FF
{〈o6, 20:00, o4〉}

Figure 11.2: Part of an instance I1 of CINEMA-SEM

explicitly, I1 and I′ are considered to be identical in terms of the information that they
represent.

Let S be a GSM schema. An OID isomorphism is a function µ that is a permutation on
the set obj of OIDs and leaves all printables fixed. Such functions are extended to Inst(S)
in the natural fashion. Two instances I and I′ are OID equivalent, denoted I ≡OID I′, if
there is an OID isomorphism µ such that µ(I)= I′. This is clearly an equivalence relation.
As suggested by the preceding example, if two instances are OID equivalent, then they
represent the same information. The formalism of OID equivalence will be used later when
we discuss the relational simulation of GSM.

The GSM is a very basic semantic data model, and many variations on the semantic
constructs included in the GSM have been explored in the literature. For example, a variety
of simple constraints can be incorporated, such as cardinality constraints on attributes
and disjointness between subclasses (e.g., that Director and Actor are disjoint). Another
variation is to require that a class be “dependent” on an attribute (e.g., that each Award
object must occur in the image of some Actor) or on a complex value class. More complex
constraints based on first-order sentences have also been explored. Some semantic models
support different kinds of ISA relationships, and some provide “derived data” (i.e., a form
of user view incorporated into the base schema).
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Translating into the Relational Model

We now describe an approach for translating semantic schemas into relational database
schemas. As we shall see, the semantics associated with the semantic schema will yield
dependencies of various forms in the relational schema.

A minor problem to be surmounted is that in a semantic model, real-world objects
such as persons can be represented using OIDs, but printable classes must be used in the
pure relational model. To resolve this, we assume that each primary abstract class has a
key, that is, a set {k1, . . . , kn} of one or more attributes with printable range such that for
each instance I and pair o, o′ of objects in the class, o = o′ iff k1(o)= k1(o

′) and . . . and
kn(o)= kn(o

′). (Although more than one key might exist for a primary class, we assume
that a single key is chosen.) In the schema CINEMA-SEM, we assume that (person_)
name is the key for Person, that title is the key for Movie, and that (theater_)name is the
key for Theater. (Generalizations of this approach permit the composition of attributes to
serve as part of a key; e.g., including in the key for Movie the composition director ◦ name,
which would give the name of the director of the movie.)

An alternative to the use of keys as just described is to permit the use of surrogates.
Informally, a surrogate of an object is a unique, unchanging printable value that is associ-
ated with the object. Many real-world objects have natural surrogates (e.g., Social Security
number for persons in the United States or France; or Invoice Number for invoices in a
commercial enterprise). In other cases, abstract surrogates can be used.

The kernel of the translation of GSM schemas into relational ones concerns how ob-
jects in GSM instances can be represented using (tuples of) printables. For each class C
occurring in the GSM schema, we associate a set of relational attributes, called the repre-
sentation ofC, and denoted rep(C). For a printable class C, rep(C) is a single attribute hav-
ing this sort. For abstract class C, rep(C) is a set of attributes corresponding to the key at-
tributes of the primary class above C. For a complex value class C = [C1, . . . , Cm], rep(C)
consists of (disjoint copies of) all of the attributes occurring in rep(C1), . . . , rep(Cm).

Translation of a GSM schema into a relation schema is illustrated in the following
example.

Example 11.1.2 One way to simulate schema CINEMA-SEM in the relational model
is to use the schema CINEMA-REL, which has the following schema:

Person [name, citizenship]
Director [name]
Actor [name]
Acts_in [name, title]
Award [prize, year]
Has_Award [name, prize, year]

Movie [title, director_name]

Theater [theater_name, address, phone]

Pariscope [theater_name, time, title, price]
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Person name citizenship Movie title director_name

Alice Great Britain Take the Money and Run Allen

Allen United States Annie Hall Allen

Keaton United States

Pariscope theater_name time title price

Le Champo 20:00 Take the Money and Run 30FF

Figure 11.3: Part of a relational instance I2 that simulates I1

Figure 11.3 shows three relations in the relational simulation I2 of the instance I1 of
Fig. 11.2.

In schema CINEMA-REL, both Actor and Acts_in are included in case there are one
or more actors that did not act in any movie. For similar reasons, Acts_in and Has_Award
are separated.

In contrast, we have assumed that each person has a citizenship (i.e., that citizenship is
a total function). If not, then two relations would be needed in place of Person. Analogous
remarks hold for directors, movies, theaters, and Pariscope objects.

In schema CINEMA-REL, we have not explicitly provided relations to represent the
attributes directed of Director or actors of Movie. This is because both of these are inverses
of other attributes, which are represented explicitly (by Movie and Acts_in, respectively).

If we were to consider the complex value class Awards of CINEMA-SEM to be
dependent on the attribute award, then the relation Award could be omitted.

Suppose that I is an instance of CINEMA-SEM and that I′ is the simulation of I.
The semantics of CINEMA-SEM, along with the assumed keys, imply that I′ will satisfy
several dependencies. This includes the following fd’s (in fact, key dependencies):

Person : name→ citizenship
Movie : title→ director_name
Theater : theater_name→ address, phone
Pariscope : theater_name, time, title→ price

A number of ind’s are also implied:

Director[name] ⊆ Person[name]
Actor[name] ⊆ Person[name]

Movie[director_name] ⊆ Director[name]
Acts_in[name] ⊆ Actor[name]
Acts_in[title] ⊆ Movie[title]
Has_Award[name] ⊆ Actor[name]
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Has_Award[prize, year] ⊆ Award[prize, year]

Pariscope[theater_name] ⊆ Theater[theater_name]
Pariscope[title] ⊆ Movie[title]

The first group of ind’s follows from ISA relationships; the second from restrictions on
attribute ranges; and the third from restrictions on the components of complex values. All
but one of the ind’s here are unary, because all of the keys, except the key for Award, are
based on a single attribute.

Preservation of Data

Suppose that S is a GSM schema with keys for primary classes, and (R, � ∪ �) is a
relational schema that simulates it, constructed in the fashion illustrated in Example 11.1.2,
where � is the set of fd’s and � is the set of ind’s. As noted in criterion (1) at the beginning
of this chapter, it is desirable that there be a natural one-to-one mapping τ from instances
of S to instances of (R, � ∪ �). To formalize this, two obstacles need to be overcome.
First, we have not developed a query language for the GSM. (In fact, no query language
has become widely accepted for any of the semantic data models. In contrast, some query
languages for object-oriented database models are now gaining wide acceptance.) We shall
overcome this obstacle by developing a rather abstract notion of “natural” for this context.

The second obstacle stems from the fact that OID-equivalent GSM instances hold
essentially the same information. Thus we would expect OID-equivalent instances to map
to the same relational instance.1 To refine criterion (1) for this context, we are searching
for a one-to-one mapping from Inst(S)/≡OID into Inst(R, � ∪ �).

A mapping τ : Inst(S)→ Inst(R, � ∪�) is OID consistent if I≡OID I′ implies τ(I)=
τ(I′). In this case, we can view τ as a mapping with domain Inst(S)/≡OID. The mapping
τ preserves the active domain if for each I ∈ Inst(S), adom(τ (I))= adom(I). [The active
domain of a GSM instance I, denoted adom(I), is the set of all printables that occur in I.]

The following can be verified (see Exercise 11.3):

Theorem 11.1.3 (Informal) Let S be a GSM schema with keys for primary classes,
and let (R, � ∪ �) be a relational simulation of S. Then there is a function τ : Inst(S)→
Inst(R, � ∪ �) such that τ is OID consistent and preserves the active domain, and such
that τ : Inst(S)/≡OID → Inst(R, � ∪ �) is one-to-one and onto.

Properties of the Relational Schema

We now consider criteria (2) and (3) to highlight desirable properties of relational schemas
that simulate GSM schemas.

1 When artificial surrogates are used to represent OIDs in the relational database, one might have to
use a notion of an “equivalent” relational database instances as well.
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Criterion (2) for schema transformations concerns desirable properties of the target
schema. We now describe three such properties resulting from the transformation of GSM
schemas into relational ones.

Suppose again that S is a GSM schema with keys, and (R, � ∪ �) is a relational
simulation of it. We assume as before that no constraints hold for S, aside from those
implied by the constructs in S and the keys.

The three properties are as follows:

1. First, � is equivalent to a family of key dependencies; in the terminology of the
next section, this means that each of the relation schemas obtained is in Boyce-
Codd Normal Form (BCNF). Furthermore, the only mvd’s satisfied by relations in
R are implied by �, and so the relation schemas are in fourth normal form (4NF).

2. Second, the family � of ind’s is acyclic (see Chapter 9). That is, there is no
sequence R1[X1] ⊆ R2[Y1], R2[X2] ⊆ R3[Y2], . . . , Rn[Xn] ⊆ R1[Yn] of ind’s in
the set. By Theorem 9.4.5, this implies that logical implication can be decided
for (� ∪ �) and that finite and unrestricted implication coincide.

3. Finally, each ind R[X]⊆ S[Y ] in � key based. That is, Y is a (minimal) key of S
under �.

Together these properties present a number of desirable features. In particular, depen-
dency implication is easy to check. Given a database schema R and sets � of fd’s and �

of ind’s over R, � and � are independent if (1) for each fd σ over R, (� ∪ �) |= σ im-
plies � |= σ , and (2) for each ind γ over R, (� ∪ �) |= γ implies � |= γ . Suppose that S
is a GSM schema and that (R, � ∪ �) is a relational simulation of S. It can be shown
that the three aforementioned properties imply that � and � are independent
(see Exercise 11.4).

To conclude this section, we consider criterion (3). This criterion concerns the preser-
vation of meta-data. We do not attempt to formalize this criterion for this context, but it
should be clear that there is a close correspondence between the dependencies in � ∪ �

and the constructs used in S. In other words, the semantics of the application as expressed
by S is also captured, in the relational representation, by the dependencies � ∪ �.

The preceding discussion assumes that no dependency holds for S, aside from those
implied by the keys and the constructs in S. However, in many cases constraints will be
incorporated into S that are not directly implied by the structure of S. For instance, recall
Example 11.1.2, and suppose that the fd Pariscope : theater_name, time→ price is true for
the underlying data. The relational simulation will have to include this dependency and, as
a result, the resulting relational schema may be missing some of the desirable features (e.g.,
the family of fd’s is not equivalent to a set of keys and the schema is no longer in BCNF).
This suggests that a semantic model might be used to obtain a coarse relational schema,
which might be refined further using the techniques for improving relational schemas
developed in the next section.



11.2 Normal Forms 251

11.2 Normal Forms

In this section, we consider schema design based on the refinement of relational schemas
and normal forms, which provide the basis for this approach. The articulation of these
normal forms is arguably the main contribution of relational database theory to the realm of
schema design. We begin the discussion by presenting two of the most prominent normal
forms and a design strategy based on “decomposition.” We then develop another normal
form that overcomes certain technical problems of the first two, and describe an associated
design strategy based on “synthesis.” We conclude with brief comments on the relationship
of ind’s with decomposition.

When all the dependencies in a relational schema (R, �) are considered to be tagged,
one can view the database schema as a set {(R1, �1), . . . , (Rn,�n)}, where each (Rj,�j)

is a relation schema and theRj ’s are distinct. In particular, an fd schema is a relation schema
(R,�) or database schema (R, �), where � is a set of tagged fd’s; this is extended in
the natural fashion to other classes of dependencies. Much of the work on refinement of
relational schemas has focused on fd schemas and (fd + mvd) schemas. This is what we
consider here. (The impact of the ind’s is briefly considered at the end of this section.)

A normal form restricts the set of dependencies that are allowed to hold in a relation
schema. The main purpose of the normal forms is to eliminate at least some of the redun-
dancies and update anomalies that might otherwise arise. Intuitively, schemas in normal
form are “good” schemas.

We introduce next two kinds of normal forms, namely BCNF and 4NF. (We will
consider a third one, 3NF, later.) We then consider techniques to transform a schema into
such desirable normal forms.

BCNF: Do Not Represent the Same Fact Twice

Recall the schema (Movies[T (itle), D(irector), A(actor)], {T →D}) from Section 8.1. As
discussed there, the Movies relation suffers from various anomalies, primarily because
there is only one Director associated with each Title but possibly several Actors. Suppose
that (R[U ], �) is a relation schema, � |=X→ Y , Y �⊆X and � �|=X→ U . It is not hard
to see that anomalies analogous to those of Movies can arise in R. Boyce-Codd normal
form prohibits this kind of situation.

Definition 11.2.1 A relation schema (R[U ], �) is in Boyce-Codd normal form (BCNF)
if � |=X→ U whenever � |=X→ Y for some Y �⊆X. An fd schema (R, �) is in BCNF
if each of its relation schemas is.

BCNF is most often discussed in cases where � involves only functional dependen-
cies. In such cases, if (R,�) is in BCNF, the anomalies of Section 8.1 do not arise. An
essential intuition underlying BCNF is, “Do not represent the same fact twice.”

The question now arises: What does one do with a relation schema (R,�) that is
not in BCNF? In many cases, it is possible to decompose this schema into subschemas
(R1, �1), . . . , (Rn,�n) without information loss. As a simple example, Movies can be
decomposed into



252 Design and Dependencies

{
(Movie_director[TD], {T → D}),
(Movie_actors[TA],∅)

}

A general framework for decomposition is presented shortly.

4NF: Do Not Store Unrelated Information in the Same Relation

Consider the relation schema (Studios[N(ame), D(irector), L(ocation)], {N →→D|L}). A
tuple 〈n, d, l〉 is in Studios if director d is employed by the studio with name n and if
this studio has an office in location l. Only trivial fd’s are satisfied by all instances of
this schema, and so it is in BCNF. However, update anomalies can still arise, essentially
because the D and L values are independent from each other. This gives rise to the following
generalization of BCNF2:

Definition 11.2.2 A relation schema (R[U ], �) is in fourth normal form (4NF) if

(a) whenever � |=X→ Y and Y �⊆X, then � |=X→ U

(b) whenever � |=X→→ Y and Y �⊆X, then � |=X→ U .

An (fd + mvd) schema (R, �) is in 4NF if each of its relation schemas is.

It is clear that if a relation schema is in 4NF, then it is in BCNF. It is easily seen that
Studios can be decomposed into two 4NF relations, without loss of information and that the
resulting relation schemas do not have the update anomalies mentioned earlier. An essential
intuition underlying 4NF is, “Do not store unrelated information in the same relation.”

The General Framework of Decomposition

One approach to refining relational schemas is decomposition. In this approach, it is usually
assumed that the original schema consists of a single wide relation containing all attributes
of interest. This is referred to as the pure universal relation assumption, or pure URA. A
relaxation of the pure URA, called the “weak URA,” is considered briefly in Section 11.3.

The pure URA is a simplifying assumption, because in practice the original schema is
likely to consist of several tables, each with its own dependencies. In that case, the design
process described for the pure URA is applied separately to each table. We adopt the pure
URA here. In this context, the schema transformation produced by the design process con-
sists of decomposing the original table into smaller tables by using the projection operator.
(In an alternative approach, selection is used to yield so-called horizontal decompositions.)

We now establish the basic framework of decompositions. Let (U [Z], �) be a relation
schema. A decomposition of (U [Z], �) is a database schema R = {R1[X1], . . . , Rn[Xn]}
with dependencies �, where ∪{Xj | j ∈ [1, n]} = Z. (The relation name ‘U ’ is used to
suggest that it is a “universal” relation.) In the sequel, we often use relation names U (Ri)
and attribute sets Z (Xi), interchangeably if ambiguity does not arise.

2 The motivation behind the names of several of the normal forms is largely historical; see the
Bibliographic Notes.
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We now consider the three criteria for schema transformation in the context of decom-
position. As already suggested, criterion (2) is evaluated in terms of the normal forms. With
regard to the preservation of data (1), the “natural” mapping from R to R is obtained by
projection: The decomposition mapping of R is the function πR : Inst(U)→ Inst(R) such
that for I ∈ inst(U), we have πR(I )(Rj) = πRj

(I ). Criterion (1) says that the decompo-
sition should not lose information when I is replaced by its projections (i.e., it should be
one-to-one).

A natural property implying that a decomposition is one-to-one is that the original
instance can be obtained by joining the component relations. Formally, a decomposition
is said to have the lossless join property if for each instance I of (U,�) the join of the
projections is the original instance, i.e., �� (πR(I))= I. It is easy to test if a decomposition
R = {R1, . . . , Rn} of (U,�) has the lossless join property. Consider the query q(I ) =
πR1(I ) �� · · · �� πRn(I ). The lossless join property means that q(I )= I for every instance
I over (U,�). But q(I )= I simply says that I satisfies the jd �� [R]. Thus we have the
following:

Theorem 11.2.3 Let (U,�) be a (full dependencies) schema and R a decomposition for
(U,�). Then R has the lossless join property iff � |=�� [R].

The preceding implication can be tested using the chase (see Chapter 8), as illustrated
next.

Example 11.2.4 Recall the schema (Movies[TDA], {T → D}). As suggested earlier,
a decomposition into BCNF is R = {TD,TA}. This decomposition has the lossless join
property. The tableau associated with the jd σ =�� [TD,TA] is as follows:

Tσ T D A

t d a1

t d1 a

tσ t d a

Consider the chase of 〈Tσ , tσ 〉 with {T →D}. Because the two first tuples agree on the T
column, d and d1 are merged because of the fd. Thus 〈t, d, a〉 ∈ chase(Tσ , tσ , {T →D}).
Hence T → D implies the jd σ , so R has the lossless join property. (See also Exer-
cise 11.9.)

Referring to the preceding example, note that it is possible to represent information in
R that cannot be directly represented in Movies. Specifically, in the decomposed schema we
can represent a movie with a director but no actors and a movie with an actor but no director.
This indicates, intuitively, that a decomposed schema may have more information capacity
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than the original (see Exercise 11.23). In practice, this additional capacity is exploited; in
fact, it provides part of the solution of so-called deletion anomalies.

Remark 11.2.5 In the preceding example, we used the natural join operator to recon-
struct decompositions. Interestingly, there are cases in which the natural join does not
suffice. To show that a decomposition is one-to-one, it suffices to exhibit an inverse to
the projection, called a reconstruction mapping. If � is permitted to include very general
constraints expressed in first-order logic that may not be dependencies per se, then there
are one-to-one decompositions whose reconstruction mappings are not the natural join (see
Exercise 11.20).

We now consider criterion (3), the preservation of meta-data. In the context of decom-
position, this is formalized in terms of “dependency preservation”: Given schema (U,�),
which is replaced by a decomposition R = {R1, . . . , Rn}, we would like to find for each j

a family �j of dependencies over Rj such that ∪j�j is equivalent to the original �. In the
case where � is a set of fd’s, we can make this much more precise. For V ⊆ U , let

πV (�)= {X→ A |XA⊆ V and � |=X→ A},

let �j = πXj
(�), and let � = ∪j�j . Obviously, � |= �. (See Proposition 10.2.4.) Intu-

itively, � consists of the dependencies in �∗ that are local to the relations in the decom-
position R. The decomposition R is said to be dependency preserving iff � ≡�. In other
words, � can be enforced by the dependencies local in the decomposition. It is easy to see
that the decomposition of Example 11.2.4 is dependency preserving.

Given an fd schema (U,�) and V ⊆ U , πV (�) has size exponential in V , simply
because of trivial fd’s. But perhaps there is a smaller set of fd’s that is equivalent to
πV (�). A cover of a set � of fd’s is a set �′ of fd’s such that �′ ≡ �. Unfortunately, in
some cases the smallest cover for a projection πV (�) is exponential in the size of � (see
Exercise 11.11).

What about projections of sets of mvd’s? Suppose that � is a set of fd’s and mvd’s
over U . Let V ⊆ U and

πmvd
V (�)= {[X→→ (Y ∩ V )|(Z ∩ V )] | [X→→ Y |Z] ∈�∗ and X ⊆ V }.

Consider a decomposition R of (U,�). Viewed as constraints on U , the sets πmvd
Rj

(�) are
now embedded mvd’s. As we saw in Chapter 10, testing implication for embedded mvd’s
is undecidable. However, the issue of testing for dependency preservation in the context of
decompositions involving fd’s and mvd’s is rather specialized and remains open.

Fd’s and Decomposition into BCNF

We now present a simple algorithm for decomposing an fd schema (U,�) into BCNF
relations. The decomposition produced by the algorithm has the lossless join property but
is not guaranteed to be dependency preserving.

We begin with a simple example.
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Example 11.2.6 Consider the schema (U,�), where U has attributes

TITLE D_NAME TIME PRICE
TH_NAME ADDRESS PHONE

and � contains

FD1 : TH_NAME → ADDRESS,PHONE

FD2 : TH_NAME,TIME,TITLE → PRICE

FD3 : TITLE → D_NAME

Intuitively, schema (U,�) represents a fragment of the real-world situation represented by
the semantic schema CINEMA-SEM.

A first step toward transforming this into a BCNF schema is to decompose using FD1,
to obtain the database schema{

({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TH_NAME,TITLE,TIME,PRICE,D_NAME}, {FD2,FD3})

}

Next FD3 can be used to split the second relation, obtaining

({TH_NAME,ADDRESS,PHONE}, {FD1})
({TITLE,D_NAME}, {FD3})
({TH_NAME,TITLE,TIME,PRICE}, {FD2})




which is in BCNF. It is easy to see that this decomposition has the lossless join property
and is dependency preserving. In fact, in this case, we obtain the same relational schema
as would result from starting with a semantic schema.

We now present the following:

Algorithm 11.2.7 (BCNF Decomposition)

Input: A relation schema (U,�), where � is a set of fd’s.

Output: A database schema (R, �) in BCNF

1. Set (R, �) := {(U,�)}.

2. Repeat until (R, �) is in BCNF:
(a) Choose a relation schema (S[V ], L) ∈ R that is not in BCNF.
(b) Choose nonempty, disjoint X, Y,Z ⊂ V such that

(i) XYZ = V ;
(ii) L |=X→ Y ; and

(iii) L �|=X→ A for each A ∈ Z.
(c) Replace (S[V ], L) in R by (S1[XY ], πXY (L)) and (S2[XZ], πXZ(L)).
(d) If there are (S[V ], L), (S′[V ′], L′) in R with V ⊆ V ′, then remove

S([V ], L) from R.
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It is easily seen that the preceding algorithm terminates [each iteration of the loop elim-
inates at least one violation of BCNF among finitely many possible ones]. The following
is easily verified (see Exercise 11.10):

Theorem 11.2.8 The BCNF Decomposition Algorithm yields a BCNF schema and a
decomposition that has the lossless join property.

What is the complexity of running the BCNF Decomposition Algorithm? The main
expenses are (1) examining subschemas (S[V ], L) to see if they are in BCNF and, if not,
finding a way to decompose them; and (2) computing the projections of L. (1) is polyno-
mial, but (2) is inherently exponential (see Exercise 11.11). This suggests a modification
to the algorithm, in which only the relational schemas S[V ] are computed at each stage,
but L= πV (�) is not. However, the problem of determining, given fd schema (U,�) and
V ⊆ U , whether (V , πV (�)) is in BCNF is co-np-complete (see Exercise 11.12). Interest-
ingly, a polynomial time algorithm does exist for finding some BCNF decomposition of an
input schema (U,�) (see Exercise 11.13).

When applying BCNF decomposition to the schema of Example 11.2.6, the same
result is achieved regardless of the order in which the dependencies are applied. This is
not always the case, as illustrated next.

Example 11.2.9 Consider (ABC, {A→ B,B→ C}). This has two BCNF decompo-
sitions

R1 = {(AB, {A→ B}), (BC, {B→ C})}
R2 = {(AB, {A→ B}), (AC,∅)}.

Note that R1 is dependency preserving, but R2 is not.

Fd’s, Dependency Preservation, and 3NF

It is easy to check that the schemas in Examples 11.2.4, 11.2.6, and 11.2.9 have depen-
dency-preserving decompositions into BCNF. However, this is not always achievable, as
shown by the following example.

Example 11.2.10 Consider a schema Lectures[C(ourse), P(rofessor), H(our)], where
tuple 〈c, p, h〉 indicates that course c is taught by professor p at hour h. We assume that
Hour ranges over weekday-time pairs (e.g., Tuesday at 4PM) and that a given course may
have lectures during several hours each week. Assume that the following two dependencies
are to hold:

� =
{

C→ P

PH → C

}
.

In other words, each course is taught by only one professor, and a professor can teach only
one course at a given hour.
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The schema (Lectures, �) is not in BCNF because � |= C→ P , but � �|= C→ H .
Applying the BCNF Decomposition Algorithm yields R = {(CP, {C→ P }), (CH,∅)}.

It is easily seen that {CP : C→ P } �|=�, and so this decomposition does not preserve
dependencies. A simple case analysis shows that there is no BCNF decomposition of
Lectures that preserves dependencies.

This raises the question: Is there a less restrictive normal form for fd’s so that a lossless
join decomposition that preserves dependencies can always be found? The affirmative
answer is based on “third normal form” (3NF). To define it, we need some auxiliary
notions. Suppose that (R[U ], �) is an fd schema. A superkey of R is a set X ⊆ U such
that � |=X→ U . A key of R is a minimal superkey. A key attribute is an attribute A ∈ U

that is in some key of R. We now have the following:

Definition 11.2.11 An fd schema (U,�) is in third normal form (3NF) if whenever
X→ A is a nontrivial fd implied by �, then either X is a superkey or A is a key attribute.
An fd schema (R, �) is in 3NF if each of its components is.

Example 11.2.12 Recall the schema (Lectures,{C→ P,PH → C}) described in Exam-
ple 11.2.10. Here PH is a key, so P is a key attribute. Thus the schema is in 3NF.

A 3NF Decomposition Algorithm can be defined in analogy to the BCNF Decompo-
sition Algorithm. We present an alternative approach, generally referred to as “synthesis.”

Given a set � of fd’s, a minimal cover of � is a set �′ of fd’s such that

(a) each dependency in �′ has the form X→ A, where A is an attribute;

(b) �′ ≡�;

(c) no proper subset of �′ implies �; and

(d) for each dependency X→ A in �′, there is no Y ⊂X such that � |= Y → A.

A minimal cover can be viewed as a reduced representative for a set of fd’s. It is straight-
forward to develop a polynomial time algorithm for producing a minimal cover of a set of
fd’s (see Exercise 11.16).

We now have the following:

Algorithm 11.2.13 (3NF Synthesis)

Input: A relation schema (U,�), where � is a set of fd’s that is a minimal cover. We
assume that each attribute of U occurs in at least one fd of �.

Output: An fd schema (R, �) in 3NF

1. If there is an fd X→ A in �, where XA= U , then output (U,�).

2. Otherwise
(a) for each fd X→ A in �, include the relational schema (XA, {X→ A})

in the output schema (R, �); and
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(b) choose a key X of U under �, and include (X,∅) in the output.

A central aspect of this algorithm is to form a relation XA for each fd X→ A in �.
Intuitively, then, the output relations result from combining or “synthesizing” attributes
rather than decomposing the full attribute set.

The following is easily verified (see Exercise 11.17):

Theorem 11.2.14 The 3NF Synthesis Algorithm decomposes a relation schema into a
database schema in 3NF that has the lossless join property and preserves dependencies.

Several improvements to the basic 3NF Synthesis Algorithm can be made easily. For
example, different schemas obtained in step (2.a) can be merged if they come from fd’s with
the same left-hand side. Step (2.b) is not needed if step (2.a) already produced a schema
whose set of attributes is a superkey for (U,�). In many practical situations, it may be
appropriate to omit step (2.b) of the algorithm. In that case, the decomposition preserves
dependencies but does not necessarily satisfy the lossless join property.

In the preceding algorithm, it was assumed that each attribute of U occurs in at
least one fd of �. Obviously, this may not always be the case, for example, the attribute
A_NAME in Example 11.2.15b does not participate in fd’s. One approach to remedy this
situation is to introduce symbolic fd’s. For instance, in that example one might include
the fd TITLE, A_NAME → ω1, where ω1 is a new attribute. One relation produced by the
algorithm will be {TITLE,A_NAME, ω1}. As a last step, attributes such as ω1 are removed.

In Example 11.2.9 we saw that the output of a BCNF decomposition may depend on
the order in which fd’s are applied. In the case of the preceding algorithm for 3NF, the
minimal cover chosen greatly impacts the final result.

Mvd’s and Decomposition into 4NF

A fundamental problem with BCNF decomposition and 3NF synthesis as just presented is
that they do not take into account the impact of mvd’s.

Example 11.2.15 (a) The schema (Studios[N(ame), D(irector), L(ocation)], {N →→
D|L}) is in BCNF and 3NF but has update anomalies. The mvd suggests a decomposition
into ({Name,Director}, {Name,Location}).

(b) A related issue is that BCNF decompositions may not separate attributes that
intuitively should be separated. For example, consider again the schema of Example 11.2.6,
but suppose that the attribute A_NAME is included to denote actor names. Following the
same decomposition steps as before, we obtain the schema



({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TITLE,D_NAME}, {FD3}),
({TH_NAME,TITLE,TIME,PRICE,A_NAME}, {FD2})
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which can be further decomposed to


({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TITLE,D_NAME}, {FD3}),
({TH_NAME,TITLE,TIME,PRICE}, {FD2}),
({TH_NAME,TITLE,TIME,A_NAME},∅)




Although there is a connection in the underlying data between TITLE and A_NAME,
the last relation here is unnatural. If we assume that the mvd TITLE →→ A_NAME is
incorporated into the original schema, we can further decompose the last relation and apply
a step analogous to (2d) of the BCNF Decomposition Algorithm to obtain



({TH_NAME,ADDRESS,PHONE}, {FD1}),
({TITLE,D_NAME}, {FD3}),
({TH_NAME,TITLE,TIME,PRICE}, {FD2}),
({TITLE,A_NAME},∅)




Fourth normal form (4NF) was originally developed to address these kinds of situa-
tions. As suggested by the preceding example, an algorithm yielding 4NF decompositions
can be developed along the lines of the BCNF Decomposition Algorithm. As with BCNF,
the output of 4NF decomposition is a lossless join decomposition that is not necessarily
dependency preserving.

A Note on Ind’s

In relational schema design starting with a semantic data model, numerous ind’s are typ-
ically generated. In contrast, the decomposition and synthesis approaches for refining re-
lational schemas as presented earlier do not take ind’s into account. It is possible to in-
corporate ind’s into these approaches, but the specific choice of ind’s is dependent on the
intended semantics of the target schema.

Example 11.2.16 Recall the schema (Movies[TDA], {T →D}) and decomposition into
(R1[TD], {T →D}) and (R2[TA],∅).

(a) If all movies must have a director and at least one actor, then bothR1[T ]⊆ R2[T ]
and R2[T ]⊆ R1[T ] should be included. In this case, the mapping from Movies
to its decomposed representation is one-to-one and onto.

(b) If the fd T →D is understood to mean that there is a total function from movies
to directors, but movies without actors are permitted, then the ind R2[T ] ⊆
R1[T ] should be included.
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(c) Finally, suppose the fd T →D is understood to mean that each movie has at
most one director (i.e., it is a partial function), and suppose that a movie can
have no actor. Then an additional relation R3[T ] should be added to hold the
titles of all movies, along with ind’s R1[T ]⊆ R3[T ] and R2[T ]⊆ R3[T ].

More generally, what if one is to refine a relational schema (R, � ∪ �), where � is
a set of tagged fd’s and mvd’s and � is a set of ind’s? It may occur that there is an ind
Ri[X] ⊆ Rj [Y ], and either X or Y is to be “split” as the result of a decomposition step.
The desired semantics of the target schema can be used to select between a variety of
heuristic approaches to preserving the semantics of this ind. If � consists of unary ind’s,
such splitting cannot occur. Speaking intuitively, if the ind’s of � are key based, then the
chances of such splitting are reduced.

11.3 Universal Relation Assumption

In the preceding section, we saw that the decomposition and synthesis approaches to
relational schema design assume the pure URA. This section begins by articulating some
of the implications that underly the pure URA. It then presents the “weak URA,” which
provides an intuitively natural mechanism for viewing a relational database instance I as if
it were a universal relation.

Underlying Assumptions

Suppose that an fd schema (U [Z], �) is given and that decomposition or synthesis will
be applied. One of several different database schemas might be produced, but presumably
all of them carry roughly the same semantics. This suggests that the attributes in Z can
be grouped into relation schemas in several different ways, without substantially affecting
their underlying semantics. Intuitively, then, it is the attributes themselves (along with the
dependencies in �), rather than the attributes as they occur in different relation schemas,
that carry the bulk of the semantics in the schema. The notion that the attributes can
represent a substantial portion of the semantics of an application is central to schema design
based on the pure URA.

When decomposition and synthesis were first introduced, the underlying implications
of this notion were not well understood. Several intuitive assumptions were articulated
that attempted to capture these implications. We describe here two of the most important
assumptions. Any approach to relational schema design based on the pure URA should also
abide by these two assumptions.

Universal Relation Scheme Assumption: This states that if an attribute name appears in two
or more places in a database schema, then it refers to the same entity set in each place.
For example, an attribute name Number should not be used for both serial numbers and
employee numbers; rather two distinct attribute names Serial# and Employee# should
be used.

Unique Role Assumption: This states that for each set of attributes there is a unique rela-
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tionship between them. This is sometimes weakened to say that there may be several
relationships, but one is deemed primary. This is illustrated in the following example.

Example 11.3.1 (a) Recall in Example 11.2.15(b) that D_NAME and A_NAME were
used for director and actor names, respectively. This is because there were two possible
relationships between movies and persons.

(b) For a more complicated example, consider a schema for bank branches that in-
cludes attributes for B(ranch), L(oan), (checking) A(ccount), and C(ustomer). Suppose
there are four relations

BL, which holds data about branches and loans they have given

BA, which holds data about branches and checking accounts they provide

CL, which holds data about customers and loans they have

CA, which holds data about customers and checking accounts they have.

This design does not satisfy the unique role assumption, mainly because of the cycle in the
schema. For example, consider the relationship between branches and customers. In fact,
there are two relationships—via loans and via accounts. Thus a request for “the” data in the
relationship between banks and customers is somewhat ambiguous, because it could mean
tuples stemming from either of the two relationships or from the intersection or union of
both of them.

One solution to this ambiguity is to “break” the cycle. For example, we could replace
the Customer attribute by the two attributes L-C(ustomer) and A-C(ustomer). Now the user
can specify the desired relationship by using the appropriate attribute.

The Weak Universal Relation Assumption

Suppose that schema (U,�) has decomposition (R, �) (with R = {R1, . . . , Rn}). When
studying decomposition, we focused primarily on instances I of (R, �) that were the image
of some instance I of (U,�) under the decomposition mapping πR. In particular, such
instances I are globally consistent. [Recall from Chapter 6 that instance I is globally
consistent if for each j ∈ [1, n], πRj

(�� I) = I(Rj); i.e., no tuple of I(Rj) is dangling
relative to the full join.] However, in many practical situations it might be useful to use
the decomposed schema R to store instances I that are not globally consistent.

Example 11.3.2 Recall the schema (Movies[TDA], {T →D}) from Example 11.2.4 and
its decomposition {TD,TA}. Suppose that for some movie the director is known, but no
actors are known. As mentioned previously, this information is easily stored in the decom-
posed database, but not in the original. The impossibility of representing this information
in the original schema was one of the anomalies that motivated the decomposition in the
first place.

Suppose that fd schema (U,�) has decomposition (R, �)= {(R1, �1), . . . , (Rn, �n)}.
Suppose also that I is an instance of R such that (1) I(Rj) |= �j for each j , but (2) I is
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I1 I2 I3

Figure 11.4: Instances illustrating weak URA

not necessarily globally consistent. Should I be considered a “valid” instance of schema
(R, �)? More generally, given a schema (U,�), a decomposition R of U , and a (not
necessarily globally consistent) instance I over R, how should we define the notion of
“satisfaction” of � by I?

The weak universal relation assumption (weak URA) provides one approach for an-
swering this question. Under the weak URA, we say that I satisfies � if there is some
instance J ∈ sat (U,�) such that I(Rj) ⊆ πRj

(J ) for each j ∈ [1, n]. In this case, J is
called a weak instance for I.

Example 11.3.3 Let U = {ABCD}, � = {A→ B,BC →D}, and R = {AB,BC,ACD}.
Consider the three instances of R shown in Fig. 11.4. The instance I1 satisfies � under the
weak URA, because J1 = {〈a, b, c, d〉} is a weak instance.

On the other hand, I2, which contains I1, does not satisfy � under the weak URA. To
see this, suppose that J2 is a weak instance for I2. Then J2 must contain the following (not
necessarily distinct) tuples:

t1 = 〈a, b, c1, d1〉
t2 = 〈a′, b, c2, d2〉
t3 = 〈a3, b, c, d3〉
t4 = 〈a, b4, c, d〉
t5 = 〈a′, b5, c, d

′〉

where the subscripted constants may be new. Because J2 |= A→ B, by considering the
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pairs 〈t1, t4〉 and 〈t2, t5〉, we see that b4 = b5 = b. Next, because J2 |= BC→D, and by
considering the pair 〈t4, t5〉, we have that d = d ′, a contradiction.

Finally, I3 does satisfy � under the weak URA.

As suggested by the preceding example, testing whether an instance I over R is a
weak instance of (U,�) for a set of fd’s � can be performed using the chase. To do that, it
suffices to construct a table over U by padding the tuples from each Rj with distinct new
variables. The resulting table is chased with the dependencies in �. If the chase fails, there
is no weak instance for I. On the other hand, a successful chase provides a weak instance
for I by simply replacing each remaining variable with a distinct new constant.

This yields the following (see Exercise 11.27):

Theorem 11.3.4 Let � be a set of fd’s over U and R a decomposition of U . Testing
whether I over R satisfies � under the weak URA can be performed in polynomial time.

Of course, the chasing technique can be extended to arbitrary egd’s, although the
complexity jumps to exptime-complete.

What about full tgd’s? Recall that full tgd’s can always be satisfied by adding new
tuples to an instance. Let � be a set of full dependencies. It is easy to see that I satisfies �
under the weak URA iff I satisfies �∗ ∩ {σ | σ is an egd} under the weak URA.

Querying under the Weak URA

Let (U,�) be a schema, where� is a set of full dependencies, and let R be a decomposition
ofU . Let us assume the weak URA, and suppose that database instance I over R satisfies�.
How should queries against I be answered? One approach is to consider the query against
all weak instances for I and then take the intersection of the answers. That is,

qweak(I)= ∩{q(I ) | I is a weak instance of I}.

We develop now a constructive method for computing qweak.
Given instance I of R, the representative instance of I is defined as follows: For each

component Ij of I, let I ′j be the result of extending Ij to be a free instance over U by
padding tuples with distinct variables. Set I ′ = ∪{I ′j | j ∈ [1, n]}. Now apply the chase
using � to obtain the representative instance rep(I, �) (or the empty instance, if two
distinct constants are to be identified). Note that some elements of rep(I, �) may have
variables occurring in them.

For X ⊆ U , let π↓X(rep(I, �)) denote the set of tuples (i.e., with no variables present)
in πX(rep(I, �)). The following can now be verified (see Exercise 11.28).

Proposition 11.3.5 Let (U,�), R and I be as above, and let X ⊆ U . Then

(a) [πX]weak(I)= π↓X(rep(I, �)).

(b) If � is a set of fd’s, then [πX]weak(I) can be computed in ptime.
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This proposition provides the basis of a constructive method for evaluating an arbitrary
algebra query q under the weak URA. Furthermore, if � is a set of fd’s, then evaluating q

will take time at most polynomial in the size of the input instance. This approach can be
generalized to the case where � is a set of full dependencies but computing the projection
is exptime-complete.
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Exercises

Exercise 11.1

(a) Extend the instance of Example 11.1.1 for CINEMA-SEM so that it has at least two
objects in each class.

(b) Let CINEMA-SEM′ be the same as CINEMA-SEM, except that a complex value
class Movie_Actor is used in CINEMA-SEM in place of the attributes acted_in and
has_actors. How would the instance you constructed for part (a) be represented in
CINEMA-SEM′?

Exercise 11.2

(a) Suppose that in CINEMA-SEM some theaters do not have phones. Describe how the
simulation CINEMA-REL can be changed to reflect this (without using null values).
What dependencies are satisfied?

(b) Do the same for the case where some persons may have more than one citizenship.

Exercise 11.3

(a) Describe a general algorithm for translating GSM schemas with keys into relational
ones.

(b) Verify Theorem 11.1.3.

(c) Verify that the relational schema resulting from a GSM schema is in 4NF and has
acyclic and key-based ind’s.

♠Exercise 11.4 [MR88, MR92] Let R be a relational database schema, � a set of tagged fd’s
for R, and � a set of ind’s for R. Assume that (R, �) is in BCNF and that � is acyclic and
consists of key-based ind’s (as will arise if R is the simulation of a GSM schema). Prove that �
and � are independent. Hint: Show that if I is an instance of R satisfying �, then no fd can be
applied during chasing of I by (� ∪ �). Now apply Theorem 9.4.5.

Exercise 11.5 [Fag79] Let (R,�) be a relation schema, and let �′ be the set of key depen-
dencies implied by �. Show that R is in 4NF iff each nontrivial mvd implied by � is implied
by �′.
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Exercise 11.6 [DF92] A key dependency X→ U is simple if X is a singleton.

(a) Suppose that (R,�) is in BCNF, where � may involve both fd’s and mvd’s. Suppose
further that (R,�) has at least one simple key. Prove that (R,�) is in 4NF.

(b) Suppose that (R,�) is in 3NF and that each key of � is simple. Prove that (R,�) is
in BCNF.

A schema (R,�) is in project-join normal form (PJ/NF) if each JD σ implied by � is implied
by the key dependencies implied by �.

(a) Show that if (R,�) is in 3NF and each key of � is simple, then (R,�) is in PJ/NF.

Exercise 11.7 Let (U,�) be a schema, where � contains possibly fd’s, mvd’s, and jd’s. Show
that (a) (U,�) is in BCNF implies (U,�) is in 3NF; (b) (U,�) is in 4NF implies (U,�) is in
BCNF; (c) (U,�) is in PJ/NF implies (U,�) is in 4NF.

Exercise 11.8 [BR80, MMSU80] Prove Theorem 11.2.3.

Exercise 11.9 Recall the schema (Movies[TDA],{T →D}). Consider the decomposition R1 =
{(TD, {T →D}), (DA,∅)}.

(a) Show that this does not have the lossless join property.

0 (b) Show that this decomposition is not one-to-one. That is, exhibit two distinct instances
I, I ′ of (Movies, {T →D}) such that πR1(I )= πR1(I

′).

Exercise 11.10 Verify Theorem 11.2.8. Hint: To prove the lossless join property, use repeated
applications of Proposition 8.2.2.

Exercise 11.11 [FJT83] For each n≥ 0, describe an fd schema (U,�) and V ⊆ U , such that
� has ≤ 2n+ 1 dependencies but the smallest cover for πV (�) has at least 2n elements.

Exercise 11.12

(a) Let (U [Z], �) be an fd schema. Give a polynomial time algorithm for determining
whether this relation schema is in BCNF. (In fact, there is a linear time algorithm.)

(b) [BB79] Show that the following problem is co-np-complete. Given fd schema
(R[U ], �) and V ⊆ U , determine whether (V , πV (�)) is in BCNF. Hint: Reduce
to the hitting set problem [GJ79].

0Exercise 11.13 [TF82] Develop a polynomial time algorithm for finding BCNF decompo-
sitions. Hint: First show that each two-attribute fd schema is in BCNF. Then show that if
(S[V ], L) is not in BCNF, then there are A,B ∈ V such that (V − AB)→ A.

Exercise 11.14 Recall the schema Showings[Th(eater), Sc(reen), Ti(tle), Sn(ack)] of Sec-
tion 8.1, which satisfies the fd Th,Sc → Ti and the mvd Th →→ Sc,Ti | Sn. Consider the two
decompositions

R1 = {{Th, Sc,Ti}, {Th, Sn}}
R2 = {{Th, Sc,Ti}, {Th, Sc, Sn}}.

Are they one-to-one? dependency preserving? Describe anomalies that can arise if either of
these decompositions is used.

Exercise 11.15 [BB79] Verify that the schema of Example 11.2.10 has no BCNF decomposi-
tion that preserves dependencies.
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Exercise 11.16 [Mai80] Develop a polynomial time algorithm that finds a minimal cover of a
set of fd’s.

Exercise 11.17 Prove Theorem 11.2.14.

Exercise 11.18 [Mai83] Show that a schema (R[U ], �) with 2n attributes and 2n fd’s can
have as many as 2n keys.

Exercise 11.19 [LO78] Let (S[V ], L) be an fd schema. Show that the following problem is
np-complete: Given A ∈ V , is there a nontrivial fd Y → A implied by L, where Y is not a
superkey and A is not a key attribute?

0Exercise 11.20 [Var82b] For this exercise, you will exhibit an example of a schema (R,�),
where � consists of dependencies expressed in first-order logic (which may not be embedded
dependencies) and a decomposition R of R such that R is one-to-one but does not have the
lossless join property.

Consider the schema R[ABCD]. Given t ∈ I ∈ inst(R), t[A] is a key element for AB in I

if there is no s ∈ I with t[A]= s[A] and t[B] �= s[B]. The notion of t[C] being a key element
for CD is defined analogously. Let � consist of the constraints

(i) ∃t ∈ I such that both t[A] and t[C] are key elements.

(ii) If t ∈ I , then t[A] is a key element or t[C] is a key element.

(iii) If s, t ∈ I and s[A] or t[C] is a key element, then the tuple u is in I , where u[AB]=
s[AB] and u[CD]= t[CD].

Let R = {R1[AB], R2[CD]} be a decomposition of (R,�).

(a) Show that the decomposition R for (R,�) is one-to-one.

(b) Exhibit a reconstruction mapping for R. (The natural join will not work.)

Exercise 11.21 This and the following exercise provide one kind of characterization of the
relative information capacity of decompositions of relation schemas. Let U be a set of attributes,
let α = {X1, . . . , Xn} be a nonempty family of subsets of U , and let X = ∪ni=1Xi. The project-
join mapping determined by α, denoted PJα, is a mapping from instances over U to instances
over ∪ni=1Xi defined by PJα(I )= ��ni=1 (πXi

(I )). α is full if ∪ni=1 = U , in which case PJα is a
full project-join mapping.

Prove the following for instances I and J over U :

(a) πX(I)⊆ PJα(I )
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(b) PJα(PJα(I ))= PJα(I )

(c) if I ⊆ J then PJα(I )⊆ PJα(J ).

0Exercise 11.22 [BMSU81] Let U be a set of attributes. If α = {X1, . . . , Xn} is a nonempty
full family of subsets of U , then Fixpt(α) denotes {I over U | PJα(I )= I } (see the preceding
exercise). For α and β nonempty full families of subsets of U , β covers α, denoted α ( β, if
for each set X ∈ α there is a set Y ∈ β such that X ⊆ Y . Prove for nonempty full families α, β
of subsets of U that the following are equivalent:

(a) α ( β

(b) PJα(I )⊇ PJβ(I ) for each instance I over U

(c) Fixpt(α)⊆ Fixpt(β).

Exercise 11.23 Given relational database schemas S and S′, we say that S′ dominates S using
the calculus, denoted S (calc S′, if there are calculus queries q : Inst(S)→ Inst(S′) and q ′ :
Inst(S′)→ Inst(S) such that q ◦ q ′ is the identity on Inst(S). Let schema R = (ABC, {A→ B})
and the decomposition R = {(AB, {A→ B}), (AC,∅)}. (a) Verify that R (calc R. (b) Show that
R �(calc R. Hint: For schemas S and S′, S′ dominates S absolutely, denoted S(abs S′, if there is
some n ≥ 0 such that for each finite subset d ⊆ dom with |d| ≥ n, |{I ∈ Inst(S) | adom(I) ⊆
d}| ≤ |{I ∈ Inst(S′) | adom(I) ⊆ d}|. Show that S (calc S′ implies S (abs S′. Then show that
R �(abs R.

0Exercise 11.24 [HY84] Let A and B be relational attributes. Consider the complex value type
T = 〈A, {B}〉, where each instance of T is a finite set of pairs having the form 〈a, b̂〉, where
a ∈ dom and b̂ is a finite subset of dom. Show that for each relational schema R, R (abs T and
T �(abs R. (See Exercise 11.23 for the definition of (abs.)

♠Exercise 11.25 [BV84b, CP84]

(a) Let (U,�) be a (full dependencies) schema and R an acyclic decomposition of U (in
the sense of acyclic joins). Then πR is one-to-one iff R has the lossless join property.
Hint: First prove the result for the case where the decomposition has two elements
(i.e., it is based on an mvd). Then generalize to acyclic decompositions, using an
induction based on the GYO algorithm.

(b) [CKV90] Show that (a) can be generalized to include unary ind’s in �.

Exercise 11.26 [Hon82] Let (U,�) be an fd schema and R= {R1, . . . , Rn} a decomposition
of U . Consider the following notions of “satisfaction” by I over R of �:

I |=1 �: if Ij |= πRj (�) for each j ∈ [1, n].
I |=2 �: if �� I |=�.
I |=3 �: if I= πR(I ) for some I over U such that I |=�.

(a) Show that |=1 and |=2 are incomparable.

(b) Show that if R preserves dependencies, then |=1 implies |=2.

(c) What is the relationship of |=1 and |=2 to |=3?

(d) What is the relationship of all of these to the notion of satisfaction based on the weak
URA?

♠Exercise 11.27 [Hon82] Prove Theorem 11.3.4.

Exercise 11.28 [MUV84, Hon82] Prove Proposition 11.3.5.




