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B Basics: Relational Query
Languages

The area of query languages, and more generally providing access to stored data, is
one of the most important topics in databases and one of the most deeply studied

ones in database theory. This part introduces three paradigms that have been developed
for querying relational databases. Each yields a family of query languages, and there are
close connections among the different families.

The first paradigm provides simple algebraic operations for manipulating relations to
construct answers to queries. This yields a language called relational algebra. It uses three
operators tailored specially for the relational model, in addition to the natural set operators.
The second paradigm is logic based. It is a variant of the predicate calculus of first-
order logic, called relational calculus, and has expressive power equivalent to the algebra.
The third paradigm stems from logic programming. Its most prominent representative in
databases is datalog, which can be viewed as logic programming without function symbols.

The three paradigms yield languages that enjoy fundamental properties that have be-
come standard for virtually all database access languages. First, they are set-at-a-time, in
the sense that they focus on identifying and uniformly manipulating sets of tuples rather
than identifying tuples individually and using loops to manipulate groups of tuples. Second,
they are associative in that tuples are identified through a specification of their properties
rather than by chasing pointers. And third, they are abstract, high-level languages that are
separated from the physical storage of the data and from the specific algorithms that are
used to implement them.

The relational algebra is conceptually a “procedural” language because queries are
specified by a sequence of operations that constructs the answer. The relational calculus
and datalog are conceptually “declarative” because the tuples in the answer are specified
by properties they satisfy, with no reference to an algorithm for producing them. However,
in modern database implementations the optimized translation of queries from any of the
three languages may have little resemblance to the original; in this sense all three are
essentially declarative.

In this part and Part D we introduce a variety of query languages based on the three
paradigms. This is done in a natural progression, starting with simple, commonly asked
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36 Basics: Relational Query Languages

queries and building up to very powerful ones. At each stage, we provide equivalent lan-
guages in the three paradigms. In this part we focus on the simplest queries and incorporate
negation into them. In Part D we incorporate recursion into the languages.

The simplest queries are based on extracting certain values as soon as a simple pattern
of tuples is found in the database. These are discussed in Chapter 4. In terms of the calculus,
the corresponding language is based on conjunction and existential quantification; hence
the term conjunctive queries. Although these queries are simple, they constitute the vast
majority of relational database queries arising in practice. In addition, conjunctive queries
have many pleasing theoretical properties. For instance, there is an elegant characterization
of two conjunctive queries being equivalent (discussed in Chapter 6). Chapter 4 also con-
siders the inclusion of a union (or disjunction) capability into these languages, yielding the
conjunctive queries with union.

In Chapter 5, the conjunctive queries (with union) are extended with negation. Adding
negation (or set difference, in the algebraic paradigm) yields the full relational calculus
and relational algebra. The calculus and algebra turn out to be equivalent; this is one of
the earliest significant results in database theory. An equivalent language is also obtained
from the datalog version of the conjunctive queries. In general, the positive results for
conjunctive queries fail with the relational calculus. In Chapter 5 we also touch on the
subject of infinite databases with finite representation and, in particular, the emerging area
of “constraint databases.”

Chapter 6 considers the conjunctive queries and the relational calculus from the per-
spective of static analysis (in the sense of programming languages). An elegant theorem
shows that properties such as containment and equivalence are decidable for the conjunc-
tive queries. Interestingly, these properties are undecidable for relational calculus. Query
optimization is also considered in Chapter 6. The focus is on conjunctive queries (most
practical and early theoretical work on optimization has been focused on these as well).
Three topics in optimization are considered. First, some of the fundamental approaches
taken by practical optimizers are considered. Second, the theory for testing equivalence
of conjunctive queries is extended to develop a technique for minimizing the number of
joins needed to compute a conjunctive query. Third, a family of interesting results con-
cerning a natural subclass of conjunctive queries is presented based on a theory of “acyclic
hypergraphs.” (More recent work on optimizing recursive datalog queries is presented in
Chapter 13.)

This concludes the presentation of the basic theory of the simple query languages. The
theory of query languages is again taken up in Part D, which considers languages with
recursion and resumes the parallel development along the three paradigms. Expressiveness
and complexity of query languages are discussed in Part E.

Some connections between the abstract languages described in Chapters 4 and 5 and
practical languages are considered in Chapter 7. We focus largely on SQL, which has
become the industry standard for relational database access, and we briefly describe two
visual languages, QBE and Access.



4 Conjunctive Queries

Alice: Shall we start asking queries?
Sergio: Very simple ones for the time being.

Riccardo: But the system will answer them fast.
Vittorio: And there is some nice theory.

In this chapter we embark on the study of queries for relational databases, a rich topic
that spans a good part of this book. This chapter focuses on a limited but extremely

natural and commonly arising class of queries called conjunctive queries. Five equivalent
versions of this query family are presented here: one from each of the calculus and datalog
paradigms, two from the algebra paradigm, and a final one that has a more visual form.
In the context of conjunctive queries, the three nonalgebraic versions can be viewed as
minor syntactic variants of each other; but these similarities diminish as the languages are
generalized to incorporate negation and/or recursion. This chapter also discusses query
composition and its interaction with user views, and it extends conjunctive queries in a
straightforward manner to incorporate union (or disjunction).

The conjunctive queries enjoy several desirable properties, including, for example,
decidability of equivalence and containment. These results will be presented in Chapter 6,
in which a basic tool, the Homomorphism Theorem, is developed. Most of these results
extend to conjunctive queries with union.

In the formal framework that we have developed in this book, we distinguish between
a query, which is a syntactic object, and a query mapping, which is the function defined by
a query interpreted under a specified semantics. However, we often blur these two concepts
when the meaning is clear from the context. In the relational model, query mappings
generally have as domain the family of all instances of a specified relation or database
schema, called the input schema; and they have as range the family of instances of an
output schema, which might be a database schema or a relation schema. In the latter case,
the relation name may be specified as part of the syntax of the query or by the context, or
it may be irrelevant to the discussion and thus not specified at all. We generally say that
a query (mapping) is from (or over) its input schema to its output schema. Finally, two
queries q1 and q2 over R are equivalent, denoted q1 ≡ q2, if they have the same output
schema and q1(I)= q2(I) for each instance I over R.

This chapter begins with an informal discussion that introduces a family of simple
queries and illustrates one approach to expressing them formally. Three versions of con-
junctive queries are then introduced, and all of them have a basis in logic. Then a brief
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(4.1) Who is the director of “Cries and Whispers”?

(4.2) Which theaters feature “Cries and Whispers”?

(4.3) What are the address and phone number of the Le Champo?

(4.4) List the names and addresses of theaters featuring a Bergman film.

(4.5) Is a film directed by Bergman playing in Paris?

(4.6) List the pairs of persons such that the first directed the second in a movie, and vice versa.

(4.7) List the names of directors who have acted in a movie they directed.

(4.8) List pairs of actors that acted in the same movie.

(4.9) On any input produce 〈“Apocalypse Now”, “Coppola”〉 as the answer.

(4.10) Where can I see “Annie Hall” or “Manhattan”?

(4.11) What are the films with Allen as actor or director?

(4.12) What films with Allen as actor or director are currently featured at the Concorde?

(4.13) List all movies that were directed by Hitchcock or that are currently playing at the Rex.

(4.14) List all actors and director of the movie “Apocalypse Now.”

Figure 4.1: Examples of conjunctive queries, some of which require union

digression is made to consider query composition and database views. The algebraic per-
spectives on conjunctive queries are then given, along with the theorem showing the equiv-
alence of all five approaches to conjunctive queries. Finally, various forms of union and
disjunction are added to the conjunctive queries.

4.1 Getting Started

To present the intuition of conjunctive queries, consider again the CINEMA database of
Chapter 3. The following correspond to conjunctive queries:

(4.1) Who is the director of “Cries and Whispers”?

(4.2) Which theaters feature “Cries and Whispers”?

(4.3) What are the address and phone number of the Le Champo?

These and other queries used in this section are gathered in Fig. 4.1. Each of the queries
just given calls for extracting information from a single relation. In contrast, queries (4.4)
through (4.7) involve more than one relation.

In queries (4.1–4.4 and 4.6–4.9), the database is asked to find values or tuples of values
for which a certain pattern of data holds in the database, and in query (4.5) the database is
asked whether a certain pattern of data holds. We shall see that the patterns can be described
simply in terms of the existence of tuples that are connected to each other by equality
of some of their coordinates. On the other hand, queries (4.10) through (4.14) cannot be
expressed in this manner unless some form of disjunction or union is incorporated.
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Example 4.1.1 Consider query (4.4). Intuitively, we express this query by stating that

if there are tuples r1, r2, r3 respectively in relations
Movies, Pariscope, Location such that

the Director in r1 is “Bergman”
and the Titles in tuple r1 and r2 are the same
and the Theaters in tuple r2 and r3 are the same

then we want the Theater and Address coordinates from tuple r3.

In this formulation we essentially use variables that range over tuples. Although this is the
basis of the so-called (relational) tuple calculus (see Exercise 5.23 in the next chapter),
the focus of most theoretical investigations has been on the domain calculus, which uses
variables that range over constants rather than tuples. This also reflects the convention
followed in the predicate calculus of first-order logic. Thus we reformulate the preceding
query as

if there are tuples 〈xti, “Bergman”, xac〉, 〈xth, xti, xs〉, and 〈xth, xad, xp〉,
respectively, in relations Movies, Pariscope, and Location

then include the tuple 〈Theater : xth, Address : xad〉 in the answer,

where xti, xac, . . . are variables. Note that the equalities specified in the first formula-
tion are achieved implicitly in the second formulation through multiple occurrences of
variables.

The translation of this into the syntax of rule-based conjunctive queries is now ob-
tained by

ans(xth, xad)←Movies(xti, “Bergman”, xac), Pariscope(xth, xti, xs),

Location(xth, xad, xp)

where ans (for “answer”) is a relation over {Theater,Address}. The atom to the left of the
← is called the rule head, and the set of atoms to the right is called the body.

The preceding rule may be abbreviated as

ans(xth, xad)←Movies(xti, “Bergman”, _), Pariscope(xth, xti, _),

Location(xth, xad, _)

where _ is used to replace all variables that occur exactly once in the rule. Such variables
are sometimes called anonymous.

In general, a rule-based conjunctive query is a single rule that has the form illustrated
in the preceding example. The semantics associated with rule-based conjunctive queries
ensures that their interpretation corresponds to the more informal expressions given in the
preceding example. Rule-based conjunctive queries can be viewed as the basic building
block for datalog, a query language based on logic programming that provides an elegant
syntax for expressing recursion.

A second paradigm for the conjunctive queries has a more visual form and uses tables
with variables and constants. Although we present a more succinct formalism for this
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Movies Title Director Actor

_The Seventh Seal Bergman

Pariscope Title Schedule

_The Seventh Seal

Theater

_Rex

Location Address Phone number

P._1 bd. Poissonnière

Theater

P._Rex

Figure 4.2: A query in QBE

paradigm later in this chapter, we illustrate it in Fig. 4.2 with a query presented in the syntax
of the language Query-By-Example (QBE) (see also Chapter 7). The identifiers starting
with a _ designate variables, and P. indicates what to output. Following the convention
established for QBE, variable names are chosen to reflect typical values that they might
take. Note that the coordinate entries left blank correspond, in terms of the rule given
previously, to distinct variables that occur exactly once in the body and do not occur in
the head (i.e., to anonymous variables).

The third version of conjunctive queries studied in this chapter is a restriction of the
predicate calculus; as will be seen, the term conjunctive query stems from this version. The
fourth and fifth versions are algebraic in nature, one for the unnamed perspective and the
other for the named perspective.

4.2 Logic-Based Perspectives

In this section we introduce and study three versions of the conjunctive queries, all stem-
ming from mathematical logic. After showing the equivalence of the three resulting query
languages, we extend them by incorporating a capability to express equality explicity,
thereby yielding a slightly more powerful family of languages.

Rule-Based Conjunctive Queries

The rule-based version of conjunctive queries is now presented formally. As will be seen
later, the rule-based paradigm is well suited for specifying queries from database schemas
to database schemas. However, to facilitate the comparison between the different variants
of the conjunctive queries, we focus first on rule-based queries whose targets are relation
schemas. We adopt the convention of using the name ans to refer to the name of the target
relation if the name itself is unimportant (as is often the case with relational queries).
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Definition 4.2.1 Let R be a database schema. A rule-based conjunctive query over R
is an expression of the form

ans(u)← R1(u1), . . . , Rn(un)

where n ≥ 0, R1, . . . , Rn are relation names in R; ans is a relation name not in R; and
u, u1, . . . , un are free tuples (i.e., may use either variables or constants). Recall that if
v = 〈x1, . . . , xm〉, then ‘R(v)’ is a shorthand for ‘R(x1, . . . , xm)’. In addition, the tuples
u, u1, . . . , un must have the appropriate arities (i.e., u must have arity of ans, and ui must
have the arity of Ri for each i ∈ [1, n]). Finally, each variable occurring in u must also
occur at least once in u1, . . . , un. The set of variables occurring in q is denoted var(q).

Rule-based conjunctive queries are often more simply called rules. In the preceding
rule, the subexpression R1(u1), . . . , Rn(un) is the body of the rule, and ‘ans(u)’ is the
head. The rule here is required by the definition to be range restricted (i.e., each variable
occurring in the head must also occur in the body). Although this restriction is followed in
most of the languages based on the use of rules, it will be relaxed in Chapter 18.

Intuitively, a rule may be thought of as a tool for deducing new facts. If one can find
values for the variables of the rule such that the body holds, then one may deduce the
head fact. This concept of “values for the variables in the rules” is captured by the notion
of “valuation.” Formally, given a finite subset V of var, a valuation ν over V is a total
function ν from V to the set dom of constants. This is extended to be identity on dom and
then extended to map free tuples to tuples in the natural fashion.

We now define the semantics for rule-based conjunctive queries. Let q be the query
given earlier, and let I be an instance of R. The image of I under q is

q(I)= {ν(u) | ν is a valuation over var(q) and ν(ui) ∈ I(Ri),

for each i ∈ [1, n]}.
The active domain of a database instance I, denoted adom(I), is the set of all constants

occurring in I, and the active domain adom(I ) of relation instance I is defined analogously.
In addition, the set of constants occurring in a query q is denoted adom(q). We use
adom(q, I) as an abbreviation for adom(q) ∪ adom(I).

Let q be a rule and I an input instance for q. Because q is range restricted, it is easily
verified that adom(q(I)) ⊆ adom(q, I) (see Exercise 4.2). In other words, q(I) contains
only constants occurring in q or in I. In particular, q(I) is finite, and so it is an instance.

A straightforward algorithm for evaluating a rule q is to consider systematically all
valuations with domain the set of variables occurring in q, and range the set of all constants
occurring in the input or q. More efficient algorithms may be achieved, both by performing
symbolic manipulations of the query and by using auxiliary data structures such as indexes.
Such improvements are considered in Chapter 6.

Returning to the intuition, under the usual perspective a fundamental difference be-
tween the head and body of a rule R0 ← R1, . . . , Rn is that body relations are viewed as
being stored, whereas the head relation is not. Thus, referring to the rule given earlier, the
values of relations R1, . . . , Rn are known because they are provided by the input instance
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I. In other words, we are given the extension of R1, . . . , Rn; for this reason they are called
extensional relations. In contrast, relation R0 is not stored and its value is computed on
request by the query; the rule gives only the “intension” or definition of R0. For this reason
we refer to R0 as an intensional relation. In some cases, the database instance associated
with R1, . . . , Rn is called the extensional database (edb), and the rule itself is referred to
as the intensional database (idb). Also, the defined relation is sometimes referred to as an
idb relation.

We now present the first theoretical property of conjunctive queries. A query q over R
is monotonic if for each I, J over R, I⊆ J implies that q(I)⊆ q(J). A query q is satisfiable
if there is some input I such that q(I) is nonempty.

Proposition 4.2.2 Conjunctive queries are monotonic and satisfiable.

Proof Let q be the rule-based conjunctive query

ans(u)← R1(u1), . . . , Rn(un).

For monotonicity, let I ⊆ J, and suppose that t ∈ q(I). Then for some valuation ν over
var(q), ν(ui) ∈ I(Ri) for each i ∈ [1, n], and t = ν(u). Because I ⊆ J, ν(ui) ∈ J(Ri) for
each i, and so t ∈ q(J).

For satisfiability, let d be the set of constants occurring in q, and let a ∈ dom be new.
Define I over the relation schemas R of the rule body so that

I(R)= (d ∪ {a})arity(R)

[i.e., the set of all tuples formed from (d ∪ {a}) having arity arity(R)]. Finally, let ν map
each variable in q to a. Then ν(ui) ∈ I(Ri) for i ∈ [1, n], and so ν(u) ∈ q(I). Thus q is
satisfiable.

The monotonicity of the conjunctive queries points to limitations in their expressive
power. Indeed, one can easily exhibit queries that are nonmonotonic and therefore not
conjunctive queries. For instance, the query “Which theaters in New York show only
Woody Allen films?” is nonmonotonic.

We close this subsection by indicating how rule-based conjunctive queries can be used
to express yes-no queries. For example, consider the query

(4.5) Is there a film directed by Bergman playing in Paris?

To provide an answer, we assume that relation name ans has arity 0. Then applying the rule

ans()←Movies(x, “Bergman”, y),Pariscope(z, x,w)

returns the relation {〈〉} if the answer is yes, and returns {} if the answer is no.
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Tableau Queries

If we blur the difference between a variable and a constant, the body of a conjunctive
query can be seen as an instance. This leads to a formulation of conjunctive queries called
“tableau”, which is closest to the visual form provided by QBE.

Definition 4.2.3 The notion of tableau over a schema R (R) is defined exactly as was
the notion of instance over R (R), except that both variables and constants may occur. A
tableau query is simply a pair (T, u) [or (T , u)] where T is a tableau and each variable in
u also occurs in T. The free tuple u is called the summary of the tableau query.

The summary tuple u in a tableau query (T, u) represents the tuples included in the
answer to the query. Thus the answer consists of all tuples u for which the pattern described
by T is found in the database.

Example 4.2.4 Let T be the tableau

Movies Title Director Actor

xti “Bergman” xac

Pariscope Theater Title Schedule

xth xti xs

Location Theater Address Phone Number

xth xad xp

The tableau query (T, 〈Theater : xth, Address : xad〉) expresses query (4.4). If the un-
named perspective on tuples is used, then the names of the attributes are not included in u.

The notion of valuation is extended in the natural fashion to map tableaux1 to in-
stances. An embedding of tableau T into instance I is a valuation ν for the variables oc-
curring in T such that ν(T)⊆ I. The semantics for tableau queries is essentially the same
as for rule-based conjunctive queries: The output of (T, u) on input I consists of all tuples
ν(u) where ν is an embedding of T into I.

Aside from the fact that tableau queries do not indicate a relation name for the an-
swer, they are syntactically close to the rule-based conjunctive queries. Furthermore, the
alternative perspective provided by tableaux lends itself to the development of several nat-
ural results. Perhaps the most compelling of these arises in the context of the chase (see

1 One tableau, two tableaux.
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Chapter 8), which provides an elegant characterization of two conjunctive queries yielding
identical results when the inputs satisfy certain dependencies.

A family of restricted tableaux called typed have been used to develop a number of
theoretical results. A tableau query q = (T , u) under the named perspective, where T is
over relation schema R and sort(u)⊆ sort(R), is typed if no variable of T or t is associated
with two distinct attributes in q. Intuitively, the term ‘typed’ is used because it is impossible
for entries from different attributes to be compared. The connection between typed tableaux
and conjunctive queries in the algebraic paradigm is examined in Exercises 4.19 and
4.20. Additional results concerning complexity issues around typed tableau queries are
considered in Exercises 6.16 and 6.21 in Chapter 6. Typed tableaux also arise in connection
with data dependencies, as studied in Part C.

Conjunctive Calculus

The third formalism for expressing conjunctive queries stems from predicate calculus. (A
review of predicate calculus is provided in Chapter 2, but the presentation of the calculus
in this and the following chapter is self-contained.)

We begin by presenting conjunctive calculus queries that can be viewed as syntactic
variants of rule-based conjunctive queries. They involve simple use of conjunction and
existential quantification. As will be seen, the full conjunctive calculus, defined later,
allows unrestricted use of conjunction and existential quantification. This provides more
flexibility in the syntax but, as will be seen, does not increase expressive power.

Consider the conjunctive query

ans(e1, . . . , em)← R1(u1), . . . , Rn(un).

A conjunctive calculus query that has the same semantics is

{e1, . . . , em | ∃x1, . . . , xk(R1(u1) ∧ · · · ∧ Rn(un))},

where x1, . . . , xk are all the variables occurring in the body and not the head. The sym-
bol∧ denotes conjunction (i.e., “and”), and ∃ denotes existential quantification (intuitively,
∃x . . . denotes “there exists an x such that . . .”). The term ‘conjunctive query’ stems from
the presence of conjunctions in the syntax.

Example 4.2.5 In the calculus paradigm, query (4.4) can be expressed as follows:

{xth, xad | ∃xti ∃xac ∃xs ∃xp (Movies(xti, “Bergman”, xac)

Pariscope(xth, xti, xs)

Location(xth, xad, xp))}.
Note that some but not all of the existentially quantified variables play the role of anony-
mous variables, in the sense mentioned in Example 4.1.1.

The syntax used here can be viewed as a hybrid of the usual set-theoretic notation,
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used to indicate the form of the query output, and predicate calculus, used to indicate what
should be included in the output. As discussed in Chapter 2, the semantics associated with
calculus formulas is a restricted version of the conventional semantics found in first-order
logic.

We now turn to the formal definition of the syntax and semantics of the (full) conjunc-
tive calculus.

Definition 4.2.6 Let R be a database schema. A (well-formed) formula over R for the
conjunctive calculus is an expression having one of the following forms:

(a) an atom over R;

(b) (ϕ ∧ ψ), where ϕ and ψ are formulas over R; or

(c) ∃xϕ, where x is a variable and ϕ is a formula over R.

In formulas we permit the abbreviation of ∃x1 . . . ∃xn by ∃x1, . . . , xn.
The usual notion of “free” and “bound” occurrences of variables is now defined. An

occurrence of variable x in formula ϕ is free if

(i) ϕ is an atom; or

(ii) ϕ = (ψ ∧ ξ) and the occurrence of x is free in ψ or ξ ; or

(iii) ϕ = ∃yψ , x and y are distinct variables, and the occurrence of x is free in ψ .

An occurrence of x in ϕ is bound if it is not free. The set of free variables in ϕ, denoted
free(ϕ), is the set of all variables that have at least one free occurrence in ϕ.

Definition 4.2.7 A conjunctive calculus query over database schema R is an expression
of the form

{e1, . . . , em | ϕ},

where ϕ is a conjunctive calculus formula, 〈e1, . . . , em〉 is a free tuple, and the set of
variables occurring in 〈e1, . . . , em〉 is exactly free(ϕ). If the named perspective is being
used, then attributes can be associated with output tuples by specifying a relation name R
of arity m. The notation

{〈e1, . . . , em〉 : A1 . . . Am | ϕ}

can be used to indicate the sort of the output explicitly.

To define the semantics of conjunctive calculus queries, it is convenient to introduce
some notation. Recall that for finite set V ⊂ var, a valuation over V is a total function ν

from V to dom. This valuation will sometimes be viewed as a syntactic expression of the
form

{x1/a1, . . . , xn/an},
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where x1, . . . , xn is a listing of V and ai = ν(xi) for each i ∈ [1, n]. This may also be
interpreted as a set. For example, if x is not in the domain of ν and c ∈ dom, then ν ∪ {x/c}
denotes the valuation with domain V ∪ {x} that is identical to ν on V and maps x to c.

Now let R be a database schema, ϕ a conjunctive calculus formula over R, and ν a
valuation over free(ϕ). Then I satisfies ϕ under ν, denoted I |= ϕ[ν], if

(a) ϕ = R(u) is an atom and ν(u) ∈ I(R); or

(b) ϕ = (ψ ∧ ξ) and2 I |= ψ[ν|free(ψ)] and I |= ξ [ν|free(ξ)]; or

(c) ϕ = ∃xψ and for some c ∈ dom, I |= ψ[ν ∪ {x/c}].
Finally, let q = {e1, . . . , em | ϕ} be a conjunctive calculus query over R. For an in-

stance I over R, the image of I under q is

q(I)= {ν(〈e1, . . . , en〉) | I |= ϕ[ν] and ν is a valuation over free(ϕ)}.

The active domain of a formula ϕ, denoted adom(ϕ), is the set of constants occurring
in ϕ; and as with queries q, we use adom(ϕ, I) to abbreviate adom(ϕ) ∪ adom(I). An easy
induction on conjunctive calculus formulas shows that if I |= ϕ[ν], then the range of ν is
contained in adom(I) (see Exercise 4.3). This implies, in turn, that to evaluate a conjunctive
calculus query, one need only consider valuations with range contained in adom(ϕ, I) and,
hence, only a finite number of them. This pleasant state of affairs will no longer hold when
disjunction or negation is incorporated into the calculus (see Section 4.5 and Chapter 5).

Conjunctive calculus formulas ϕ and ψ over R are equivalent if they have the same
free variables and, for each I over R and valuation ν over free(ϕ) = free(ψ), I |= ϕ[ν]
iff I |= ψ[ν]. It is easily verified that if ϕ and ψ are equivalent, and if 9 ′ is the result of
replacing an occurrence of ϕ by ψ in conjunctive calculus formula 9, then 9 and 9 ′ are
equivalent (see Exercise 4.4).

It is easily verified that for all conjunctive calculus formulas ϕ, ψ , and ξ , (ϕ ∧ ψ) is
equivalent to (ψ ∧ ϕ), and (ϕ ∧ (ψ ∧ ξ)) is equivalent to ((ϕ ∧ ψ) ∧ ξ). For this reason,
we may view conjunction as a polyadic connective rather than just binary.

We next show that conjunctive calculus queries, which allow unrestricted nesting
of ∃ and ∧, are no more powerful than the simple conjunctive queries first exhibited,
which correspond straightforwardly to rules. Thus the simpler conjunctive queries provide
a normal form for the full conjunctive calculus. Formally, a conjunctive calculus query
q = {u | ϕ} is in normal form if ϕ has the form

∃x1, . . . , xm(R1(u1) ∧ · · · ∧ Rn(un)).

Consider now the two rewrite (or transformation) rules for conjunctive calculus queries:

Variable substitution: replace subformula

∃x ψ by ∃y ψx
y ,

2 ν|V for variable set V denotes the restriction of ν to V .
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if y does not occur in ψ , where ψx
y denotes the formula obtained by replacing all free

occurrences of x by y in ψ .

Merge-exists: replace subformula

(∃y1, . . . , ynψ ∧ ∃z1, . . . , zmξ) by ∃y1, . . . , yn, z1, . . . , zm(ψ ∧ ξ)

if {y1, . . . , yn} and {z1, . . . , zm} are disjoint, none of {y1, . . . , yn} occur (free or bound)
in ξ , and none of {z1, . . . , zm} occur (free or bound) in ψ .

It is easily verified (see Exercise 4.4) that (1) application of these transformation rules to a
conjunctive calculus formula yields an equivalent formula, and (2) these rules can be used
to transform any conjunctive calculus formula into an equivalent formula in normal form.
It follows that:

Lemma 4.2.8 Each conjunctive calculus query is equivalent to a conjunctive calculus
query in normal form.

We now introduce formal notation for comparing the expressive power of query lan-
guages. Let Q1 and Q2 be two query languages (with associated semantics). Then Q1 is
dominated byQ2 (or,Q1 is weaker thanQ2), denotedQ1 &Q2, if for each query q1 inQ1

there is a query q2 in Q2 such that q1 ≡ q2. Q1 and Q2 are equivalent, denoted Q1 ≡Q2,
if Q1 &Q2 and Q2 &Q1.

Because of the close correspondence between rule-based conjunctive queries, tableau
queries, and conjunctive calculus queries in normal form, the following is easily verified
(see Exercise 4.15).

Proposition 4.2.9 The rule-based conjunctive queries, the tableau queries, and the
conjunctive calculus are equivalent.

Although straightforward, the preceding result is important because it is the first of
many that show equivalence between the expressive power of different query languages.
Some of these results will be surprising because of the high contrast between the languages.

Incorporating Equality

We close this section by considering a simple variation of the conjunctive queries pre-
sented earlier, obtained by adding the capability of explicitly expressing equality between
variables and/or constants. For example, query (4.4) can be expressed as

ans(xth, xad)←Movies(xti, xd, xac), xd = “Bergman”,

Pariscope(xth, xti, xs), Location(xth, xad, xp)

and query (4.6) can be expressed as

ans(y1, y2)←Movies(x1, y1, z1), Movies(x2, y2, z2), y1 = z2, y2 = z1.
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It would appear that explicit equalities like the foregoing can be expressed by con-
junctive queries without equalities by using multiple occurrences of the same variable or
constant. Although this is basically true, two problems arise. First, unrestricted rules with
equality may yield infinite answers. For example, in the rule

ans(x, y)← R(x), y = z

y and z are not tied to relation R, and there are infinitely many valuations satisfying the
body of the rule. To ensure finite answers, it is necessary to introduce an appropriate notion
of range restriction. Informally, an unrestricted rule with equality is range restricted if the
equalities require that each variable in the body be equal to some constant or some variable
occurring in an atom R(ui); Exercise 4.5 explores the notion of range restriction in more
detail. A rule-based conjunctive query with equality is a range-restricted rule with equality.

A second problem that arises is that the equalities in a rule with equality may cause
the query to be unsatisfiable. (In contrast, recall that rules without equality are always
satisfiable; see Proposition 4.2.2.) Consider the following query, in which R is a unary
relation and a, b are distinct constants.

ans(x)← R(x), x = a, x = b.

The equalities present in this query require that a = b, which is impossible. Thus there
is no valuation satisfying the body of the rule, and the query yields the empty relation on
all inputs. We use q∅:R,R (or q∅ if R and R are understood) to denote the query that maps
all inputs over R to the empty relation over R. Finally, note that one can easily check if the
equalities in a conjunctive query with equality are unsatisfiable (and hence if the query is
equivalent to q∅). This is done by computing the transitive closure of the equalities in the
query and checking that no two distinct constants are required to be equal. Each satisfiable
rule with equality is equivalent to a rule without equality (see Exercise 4.5c).

One can incorporate equality into tableau queries in a similar manner by adding sep-
arately a set of required equalities. Once again, no expressive power is gained if the
query is satisfiable. Incorporating equality into the conjunctive calculus is considered in
Exercise 4.6.

4.3 Query Composition and Views

We now present a digression that introduces the important notion of query composition
and describe its relationship to database views. A main result here is that the rule-based
conjunctive queries with equality are closed under composition.

Consider a database R = {R1, . . . , Rn}. Suppose that we have a query q (in any of the
preceding formalisms). Conceptually, this can be used to define a relation with new relation
name S1, which can be used in subsequent queries as any ordinary relation from R. In
particular, we can use S1 in the definition of a new relation S2, and so on. In this context, we
could call each of S1, S2, . . . intensional (in contrast with the extensional relations of R).

This perspective on query composition is expressed most conveniently within the rule-
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based paradigm. Specifically, a conjunctive query program (with or without equality) is a
sequence P of rules having the form

S1(u1)← body1

S2(u2)← body2

...
Sm(um)← bodym,

where each Si is distinct and not in R; and for each i ∈ [1,m], the only relation names
that may occur in bodyi are R1, . . . , Rn and S1, . . . , Si−1. An instance I over R and the
program P can be viewed as defining values for all of S1, . . . , Sm in the following way:
For each i ∈ [1,m], [P(I)](Si) = qi([P(I)]), where qi is the ith rule and defines relation Si
in terms of I and the previous Sj ’s. If P is viewed as defining a single output relation, then
this output is [P(I)](Sm). Analogous to rule-based conjunctive queries, the relations in R
are called edb relations, and the relations occurring in rule heads are called idb relations.

Example 4.3.1 Let R = {Q,R} and consider the conjunctive query program

S1(x, z)←Q(x, y), R(y, z,w)

S2(x, y, z)← S1(x,w), R(w, y, v), S1(v, z)

S3(x, z)← S2(x, u, v),Q(v, z).

Figure 4.3 shows an example instance I for R and the values that are associated to S1, S2, S3

by P(I).
It is easily verified that the effect of the first two rules of P on S2 is equivalent to the

effect of the rule

S2(x, y, z)←Q(x1, y1), R(y1, z1, w1), x = x1, w = z1,

R(w, y, v),Q(x2, y2), R(y2, z2, w2), v = x2, z= z2.

Alternatively, expressed without equality, it is equivalent to

S2(x, y, z)← Q(x, y1), R(y1, w,w1), R(w, y, v),Q(v, y2), R(y2, z, w2).

Note how variables are renamed to prevent undesired “cross-talk” between the different
rule bodies that are combined to form this rule. The effect of P on S3 can also be expressed
using a single rule without equality (see Exercise 4.7).

It is straightforward to verify that if a permutation P ′ of P (i.e., a listing of the elements
of P in a possibly different order) satisfies the restriction that relation names in a rule
body must be in a previous rule head, then P ′ will define the same mapping as P . This
kind of consideration will arise in a richer context when stratified negation is considered in
Chapter 15.
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Q R S1 S2 S3

1 2 1 1 1 1 3 1 1 1 1 2

2 1 2 3 1 2 1 1 1 3 2 2

2 2 3 1 2 2 3 2 1 1

4 4 1 2 1 3

Figure 4.3: Application of a conjunctive query program

Example 4.3.2 Consider the following program P :

T (a, x)← R(x)

S(x)← T (b, x).

Clearly, P always defines the empty relation S, so it is not equivalent to any rule-based
conjunctive query without equality. Intuitively, the use of the constants a and b in P masks
the use of equalities, which in this case are contradictory and yield an unsatisfiable query.

Based on the previous examples, the following is easily verified (see Exercise 4.7).

Theorem 4.3.3 (Closure under Composition) If conjunctive query program P defines
final relation S, then there is a conjunctive query q, possibly with equality, such that on
all input instances I, q(I) = [P(I)](S). Furthermore, if P is satisfiable, then q can be
expressed without equality.

The notion of programs is based on the rule-based formalism of the conjunctive
queries. In the other versions introduced previously and later in this chapter, the notation
does not conveniently include a mechanism for specifying names for the output of inter-
mediate queries. For the other formalisms we use a slightly more elaborate notation that
permits the specification of these names. In particular, all of the formalisms are compatible
with a functional, purely expression-based paradigm:

let S1 = q1 in

let S2 = q2 in

...

let Sm−1 = qm−1 in

qm

and with an imperative paradigm in which the intermediate query values are assigned to
relation variables:
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S1 := q1;
S2 := q2;

...
Sm−1 := qm−1;
Sm := qm.

It is clear from Proposition 4.2.9 and Theorem 4.3.3 that the conjunctive calculus and
tableau queries with equality are both closed under composition.

Composition and User Views

Recall that the top level of the three-level architecture for databases (see Chapter 1) consists
of user views (i.e., versions of the data that are restructured and possibly restricted images
of the database as represented at the middle level). In many cases these views are specified
as queries (or query programs). These may be materialized (i.e., a physical copy of the view
is stored and maintained) or virtual (i.e., relevant information about the view is computed
as needed). In the latter case, queries against the view generate composed queries against
the underlying database, as illustrated by the following example.

Example 4.3.4 Consider the view over schema {Marilyn, Champo-info} defined by the
following two rules:

Marilyn(xt)←Movies(xt, xd, “Monroe”)

Champo-info(xt, xs, xp)← Pariscope(“Le Champo”, xt, xs),

Location(“Le Champo”, xa, xp).

The conjunctive query “What titles in Marilyn are featured at the Le Champo at 21:00?”
can be expressed against the view as

ans(xt)←Marilyn(xt), Champo-info(xt, “21:00”, xp).

Assuming that the view is virtual, evaluation of this query is accomplished by con-
sidering the composition of the query with the view definition. This composition can be
rewritten as

ans(xt)←Movies(xt, xd, “Monroe”),

Pariscope(“Le Champo”, xt, “21:00”)

Location(“Le Champo”, xa, xp).

An alternative expression specifying both view and query now follows. (Expressions
from the algebraic versions of the conjunctive queries could also be used here.)
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Marilyn := {xt | ∃xd(Movies(xt, xd, “Monroe”))};
Champo-info := {xt, xs, xp | ∃xa(Location(“Le Champo”, xt, xs)

∧ Location(“Le Champo”, xa, xp)};
ans := {xt |Marilyn(xt) ∧ ∃xp(Champo-info(xt, “21:00”, xp))}.

This example illustrates the case in which a query is evaluated over a single view;
evaluation of the query involves a two-layer composition of queries. If a series of nested
views is defined, then query evaluation can involve query compositions having two or more
layers.

4.4 Algebraic Perspectives

The use of algebra operators provides a distinctly different perspective on the conjunctive
queries. There are two distinct algebras associated with the conjunctive queries, and they
stem, respectively, from the named, ordered-tuple perspective and the unnamed, function-
based perspective. After presenting the two algebras, their equivalence with the conjunctive
queries is discussed.

The Unnamed Perspective: The SPC Algebra

The algebraic paradigm for relational queries is based on a family of unary and binary oper-
ators on relation instances. Although their application must satisfy some typing constraints,
they are polymorphic in the sense that each of these operators can be applied to instances
of an infinite number of arities or sorts. For example, as suggested in Chapter 3, the union
operator can take as input any two relation instances having the same sort.

Three primitive algebra operators form the unnamed conjunctive algebra: selection,
projection, and cross-product (or Cartesian product). This algebra is more often referred
to as the SPC algebra, based on the first letters of the three operators that form it. (This
convention will be used to specify other algebras as well.) An example is given before the
formal definition of these operators.

Example 4.4.1 We show how query (4.4) can be built up using the three primitive
operators. First we use selection to extract the tuples of Movies that have Bergman as
director.

I1 := σ2=“Bergman”(Movies)

Next a family of “wide” (six columns wide, in fact) tuples is created by taking the cross-
product of I1 and Pariscope.

I2 := I1 × Pariscope
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Another selection is performed to focus on the members of I2 that have first and fifth
columns equal.

I3 := σ1=5(I2)

In effect, the cross-product followed by this selection finds a matching of tuples from I1

and Pariscope that agree on the Title coordinates.
At this point we are interested only in the theaters where these films are playing, so

we use projection to discard the unneeded columns, yielding a unary relation.

I4 := π4(I3)

Finally, this is paired with Location and projected on the Theater and Address columns to
yield the answer.

I5 := π2,3(σ1=2(I4 × Location))

The development just given uses SPC expressions in the context of a simple imperative
language with assignment. In the pure SPC algebra, this query is expressed as

π2,3(σ1=2(π4(σ1=5(σ2=“Bergman”(Movies)× Pariscope))× Location)).

Another query that yields the same result is

π4,8(σ4=7(σ1=5(σ2=“Bergman”(Movies× Pariscope× Location)))).

This corresponds closely to the conjunctive calculus query of Example 4.2.5.

Although the algebraic operators have a procedural feel to them, algebraic queries are
used by most relational database systems as high-level specifications of desired output.
Their actual implementation is usually quite different from the original form of the query,
as will be discussed in Section 6.1.

We now formally define the three operators forming the SPC algebra.

Selection: This can be viewed as a “horizontal” operator. The two primitive forms are
σj=a and σj=k, where j, k are positive integers and a ∈ dom. [In practice, we usually
surround constants with quotes (“ ”).] The operator σj=a takes as input any relation
instance I with arity ≥ j and returns as output an instance of the same arity. In
particular,

σj=a(I )= {t ∈ I | t (j)= a}.

The operator σj=k for positive integers j, k is defined analogously for inputs with arity
≥ max{j, k}. This is sometimes called atomic selection; generalizations of selection
will be defined later.
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Projection: This “vertical” operator can be used to delete and/or permute columns of a
relation. The general form of this operator is πj1,...,jn, where j1, . . . , jn is a possibly
empty sequence of positive integers (the empty sequence is written [ ]), possibly with
repeats. This operator takes as input any relation instance with arity≥max{j1, . . . , jn}
(where the max of ∅ is 0) and returns an instance with arity n. In particular,

πj1,...,jn(I )= {〈t (j1), . . . , t (jn)〉 | t ∈ I }.

Cross-product (or Cartesian product): This operator provides the capability for combining
relations. It takes as inputs a pair of relations having arbitrary arities n and m and
returns a relation with arity n + m. In particular, if arity(I ) = n and arity(J ) = m,
then

I × J = {〈t (1), . . . , t (n), s(1), . . . , s(m)〉 | t ∈ I and s ∈ J }.

Cross-product is associative and noncommutative and has the nonempty 0-ary relation
{〈〉} as left and right identity. Because it is associative, we sometimes view cross-product
as a polyadic operator and write, for example, I1 × · · · × In.

We extend the cross-product operator to tuples in the natural fashion—that is u× v is
a tuple with arity = arity(u)+ arity(v).

The SPC algebra is the family of well-formed expressions containing relation names
and one-element unary constants and closed under the application of the selection, projec-
tion, and cross-product operators just defined. Each expression is considered to be defined
over a given database schema and has an associated output arity. We now give the formal,
inductive definition.

Let R be a database schema. The base SPC (algebra) queries and output arities are

Input relation: Expression R; with arity equal to arity(R).

Unary singleton constant: Expression {〈a〉}, where a ∈ dom; with arity equal to 1.

The family of SPC (algebra) queries contains all base SPC queries and, for SPC queries
q1, q2 with arities α1, α2, respectively,

Selection: σj=a(q1) and σj=k(q1) whenever j, k ≤ α1 and a ∈ dom; these have arity α1.

Projection: πj1,...,jn(q1), where j1, . . . , jn ≤ α1; this has arity n.

Cross product: q1 × q2; this has arity α1 + α2.

In practice, we sometimes use brackets to surround algebraic queries, such as [R×
σ1=a(S)](I). In addition, parentheses may be dropped if no ambiguity results.

The semantics of these queries is defined in the natural manner (see Exercise 4.8).
The SPC algebra includes unsatisfiable queries, such as σ1=a(σ1=b(R)), where

arity(R)≥ 1 and a �= b. This is equivalent to q∅.
As explored in Exercise 4.22, permitting as base SPC queries constant queries that are

not unary (i.e., expressions of the form {〈a1〉, . . . , 〈an〉}) yields expressive power greater
than the rule-based conjunctive queries with equality. This is also true of selection for-
mulas in which disjunction is permitted. As will be seen in Section 4.5, these capabilities
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are subsumed by including an explicit union operator into the SPC algebra. Permitting
negation in selection formulas also extends the expressive power of the SPC algebra (see
Exercise 4.27b).

Before leaving SPC algebra, we mention three operators that can be simulated by the
primitive ones. The first is intersection (∩), which is easily simulated (see Exercise 4.28).
The other two operators involve generalizations of the selection and cross-product oper-
ators. The resulting algebra is called the generalized SPC algebra. We shall introduce a
normal form for generalized SPC algebra expressions.

The first operator is a generalization of selection to permit the specification of multiple
conditions. A positive conjunctive selection formula is a conjunction F = γ1 ∧ · · · ∧ γn
(n≥ 1), where each conjunct γi has the form j = a or j = k for positive integers j, k and
a ∈ dom; and a positive conjunctive selection operator is an expression of the form σF ,
where F is a positive conjunctive selection formula. The intended typing and semantics
for these operators is clear, as is the fact that they can be simulated by a composition of
selections as defined earlier.

The second operator, called equi-join, is a binary operator that combines cross-product
and selection. A (well-formed) equi-join operator is an expression of the form '(F where
F = γ1 ∧ · · · ∧ γn (n≥ 1) is a conjunction such that each conjunct γi has the form j = k.
An equi-join operator '(F can be applied to any pair I, J of relation instances, where the
arity(I )≥ the maximum integer occurring on the left-hand side of any equality in F , and
arity(J ) ≥ the maximum integer occurring on the right-hand side of any equality in F .
Given an equi-join expression I '(F J , let F ′ be the result of replacing each condition
j = k in F by j = arity(I )+ k. Then the semantics of I '(F J is given by σF ′(I × J ). As
with cross-product, equi-join is also defined for pairs of tuples, with an undefined output if
the tuples do not satisfy the conditions specified.

We now develop a normal form for SPC algebra. We stress that this normal form is
useful for theoretical purposes and, in general, represents a costly way to compute the
answer of a given query (see Chapter 6).

An SPC algebra expression is in normal form if it has the form

πj1,...,jn({〈a1〉} × · · · × {〈am〉} × σF(R1 × · · · × Rk)),

where n ≥ 0; m ≥ 0; a1, . . . , am ∈ dom; {1, . . . , m} ⊆ {j1, . . . , jn}; R1, . . . , Rk are rela-
tion names (repeats permitted); and F is a positive conjunctive selection formula.

Proposition 4.4.2 For each (generalized) SPC query q there is a generalized SPC query
q ′ in normal form such that q ≡ q ′.

The proof of this proposition (see Exercise 4.12) is based on repeated application of the
following eight equivalence-preserving SPC algebra rewrite rules (or transformations).

Merge-select: replace σF(σF ′(q)) by σF∧F ′(q).
Merge-project: replace π$j (π$k(q)) by π$l(q), where li = kji for each term li in $l.
Push-select-through-project: replace σF(π$j (q)) by π$j (σF ′(q)), where F ′ is obtained from

F by replacing all coordinate values i by ji.
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Push-select-through-singleton: replace σ1=j (〈a〉 × q) by 〈a〉 × σ(j−1)=a(q).
Associate-cross: replace ((q1× · · · × qn)× q) by (q1× · · · qn× q), and replace (q × (q1×

· · · qn)) by (q × q1 × · · · qn).
Commute-cross: replace (q × q ′) by π$j $j ′(q

′ × q), where $j = arity(q ′)+ 1, . . . , arity(q ′)+
arity(q), and $j ′ = 1, . . . , arity(q ′).

Push-cross-through-select: replace (σF (q)× q ′) by σF(q × q ′), and replace (q × σF(q
′))

by σF ′(q × q ′), where F ′ is obtained from F by replacing all coordinate values i by
i + arity(q).

Push-cross-through-project: replace (π$j (q)× q ′) by π$j (q × q ′), and replace (q × π$j (q
′))

by π $j ′(q × q ′), where $j ′ is obtained from $j by replacing all coordinate values i by
i + arity(q).

For a set S of rewrite rules and algebra expressions q, q ′, write q→S q ′, or simply
q→ q ′ if S is understood from the context, if q ′ is the result of replacing a subexpression
of q according to one of the rules in S. Let ∗→S denote the reflexive, transitive closure
of→S .

A family S of rewrite rules is sound if q→S q ′ implies q ≡ q ′. If S is sound, then
clearly q ∗→S q ′ implies q ≡ q ′.

It is easily verified that the foregoing set of rewrite rules is sound and that for each SPC
query q there is a normal form SPC query q ′ such that q ′ is in normal form, and q ∗→ q ′
(see Exercise 4.12).

In Section 6.1, we describe an approach to optimizing the evaluation of conjunctive
queries using rewrite rules. For example, in that context, the merge-select and merge-
project transformations are helpful, as are the inverses of the push-cross-through-select
and push-cross-through-project.

Finally, note that an SPC query may require, as the result of transitivity, the equality
of two distinct constants. Thus there are unsatisfiable SPC queries equivalent to q∅. This is
analogous to the logic-based conjunctive queries with equality. It is clear, using the normal
form, that one can check whether an SPC query is q∅ by examining the selection formula
F . The set of SPC queries that are not equivalent to q∅ forms the satisfiable SPC algebra.

The Named Perspective: The SPJR Algebra

In Example 4.4.1, the relation I3 was constructed using selection and cross-product by the
expression σ1=5(I1 × Pariscope). As is often the case, the columns used in this selection
are labeled by the same attribute. In the context of the named perspective on tuples, this
suggests a natural variant of the cross-product operator (and of the equi-join operator) that
is called natural join and is denoted by '(. Informally, the natural join requires the tuples
that are concatenated to agree on the common attributes.
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Example 4.4.3 The natural join of Movies and Pariscope is

Movies '( Pariscope

= {u with sort Title Director Actor Theater Schedule |
for some v ∈Movies and w ∈ Pariscope,

u[Title Director Actor]= v and u[Theater Title Schedule]= w}
= π1,2,3,4,6(Movies '(1=2 Pariscope)

(assuming that the sort of the last expression corresponds to that of the previous expres-
sion). More generally, using the natural analog of projection and selection for the named
perspective, query (4.4) can be expressed as

πTheater,Address((σDirector=“Bergman′′(Movies) '( Pariscope) '( Location).

As suggested by the preceding example, natural join can be used in the named context
to replace certain equi-joins arising in the unnamed context. However, a problem arises if
two relations sharing an attribute A are to be joined but without forcing equality on the A
coordinates, or if a join is to be formed based on the equality of attributes not sharing the
same name. For example, consider the query

(4.8) List pairs of actors that acted in the same movie.

To answer this, one would like to join the Movies relation with itself but matching only on
the Title column. This will be achieved by first creating a copy Movies′ of Movies in which
the attribute Director has been renamed to Director′ and Actor to Actor′; joining this with
Movies; and finally projecting onto the Actor and Actor′ columns. Renaming is also needed
for query (4.6) (see Exercise 4.11).

The named conjunctive algebra has four primitive operators: selection, essentially as
before; projection, now with repeats not permitted; (natural) join; and renaming. It is thus
referred to as the SPJR algebra. As with the SPC algebra, we define the individual operators
and then indicate how they are combined to form a typed, polymorphic algebra. In each
case, we indicate the sorts of input and output. If a relation name is needed for the output,
then it is assumed to be chosen to have the correct sort.

Selection: The selection operators have the form σA=a and σA=B , where A,B ∈ att and
a ∈ dom. These operators apply to any instance I with A ∈ sort(I ) [respectively,
A,B ∈ sort(I )] and are defined in analogy to the unnamed selection, yielding an
output with the same sort as the input.

Projection: The projection operator has the form πA1,...,An, n ≥ 0 (repeats not permitted)
and operates on all inputs having sort containing {A1, . . . , An}, producing output with
sort {A1, . . . , An}.

(Natural) join: This operator, denoted '(, takes arbitrary inputs I and J having sorts V and
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W , respectively, and produces an output with sort equal to V ∪W . In particular,

I '( J = {t over V ∪W | for some v ∈ I and w ∈ J,
t[V ]= v and t[W ]= w}.

When sort(I )= sort(J ), then I '( J = I ∩ J , and when sort(I ) ∩ sort(J )= ∅, then
I '( J is the cross-product of I and J . The join operator is associative, commutative, and
has the nonempty 0-ary relation {〈〉} as left and right identity. Because it is associative, we
sometimes view join as a polyadic operator and write, for example, I1 '( · · · '( In.

As with cross-product and equi-join, natural join is extended to operate on pairs of
tuples, with an undefined result if the tuples do not match on the appropriate attributes.

Renaming: An attribute renaming for a finite set U of attributes is a one-one mapping from
U to att. An attribute renaming f for U can be described by specifying the set of pairs
(A, f (A)), where f (A) �= A; this is usually written as A1A2 . . . An→ B1B2 . . . Bn to
indicate that f (Ai)= Bi for each i ∈ [1, n] (n ≥ 0). A renaming operator for inputs
over U is an expression δf , where f is an attribute renaming for U ; this maps to
outputs over f [U ]. In particular, for I over U ,

δf (I )= {v over f [U ] | for some u ∈ I, v(f (A))= u(A) for each A ∈ U}.

Example 4.4.4 Let I, J be the two relations, respectively over R, S, given in Fig. 4.4.
Then I '( J , σA=1(I ), δBC→B ′A(J ), and πA(I) are also shown there. Let K be the one-
tuple relation 〈A : 1, C : 9〉. Then πA,B(I '( K) coincides with σA=1(I ) and J '( K =
{〈A : 1, B : 8, C : 9〉}.

The base SPJR algebra queries are:

Input relation: Expression R; with sort equal to sort(R).

Unary singleton constant: Expression {〈A : a〉}, where a ∈ dom; with sort A.

The remainder of the syntax and semantics of the SPJR algebra is now defined in analogy
to those of the SPC algebra (see Exercise 4.8).

Example 4.4.5 Consider again Fig. 4.4. Let I be the instance over {R, S} such that
I(R) = I and I(S) = J . Then [R] is a query and the answer to that query, denoted
R(I), is just I . Figure 4.4 also gives the values of S(I), [R '( S](I), [σA=1(R)](I),
[δBC→B ′A(S)](I), and [πA(R)](I). Let KA = {〈A : 1〉} and KC = {〈C : 9〉}. Then [KA]
and [KC] are constant queries, and [KA '(KC] is a query that evaluates (on all inputs) to
the relation K of Example 4.4.4.

As with the SPC algebra, we introduce a natural generalization of the selection oper-
ator for the SPJR algebra. In particular, the notions of positive conjunctive selection for-
mula and positive conjunctive selection operator are defined for the context in complete
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R A B S B C [R '( S] A B C

1 2 2 3 1 2 3

4 2 2 5 1 2 5

6 6 6 4 4 2 3

7 7 8 9 4 2 5

1 7 6 6 4

1 6 1 6 4

[σA=1(R)] A B [δBC→B ′A(S)] B ′ A [πA(R)] A

1 2 2 3 1

1 7 2 5 4

1 6 6 4 6

8 9 7

Figure 4.4: Examples of SPJR operators

analogy to the unnamed case. Including this operator yields the generalized SPJR algebra.

A normal form result analogous to that for the SPC algebra is now developed. In
particular, an SPJR algebra expression is in normal form if it has the form

πB1,...,Bn({〈A1 : a1〉} '( · · · '( {〈Am : am〉} '( σF(δf1(R1) '( · · · '( δfk(Rk))),

where n ≥ 0; m ≥ 0; a1, . . . , am ∈ dom; each of A1, . . . , Am occurs in B1, . . . , Bn; the
Ai’s are distinct; R1, . . . , Rk are relation names (repeats permitted); δfj is a renaming
operator for sort(Rj) for each j ∈ [1, k] and no Ai’s occur in any δfj (Rj); the sorts
of δf1(R1), . . . , δfk(Rk) are pairwise disjoint; and F is a positive conjunctive selection
formula. The following is easily verified (see Exercise 4.12).

Proposition 4.4.6 For each (generalized) SPJR query q, there is a generalized SPJR
query q ′ in normal form such that q ≡ q ′.

The set of SPJR queries not equivalent to q∅ forms the satisfiable SPJR algebra.

Equivalence Theorem

We now turn to the main result of the chapter, showing the equivalence of the various
formalisms introduced so far for expressing conjunctive queries. As shown earlier, the three
logic-based versions of the conjunctive queries are equivalent. We now show that the SPC
and SPJR algebras are also equivalent to each other and then obtain the equivalence of the
algebraic languages and the three logic-based languages.
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Lemma 4.4.7 The SPC and SPJR algebras are equivalent.

Crux We prove the inclusion SPC algebra & SPJR algebra; the converse is similar (see
Exercise 4.14). Let q be the following normal form SPC query:

πj1,...,jn({〈a1〉} × · · · × {〈am〉} × σF(R1 × · · · × Rk)).

We now describe an SPJR query q ′ that is equivalent to q; q ′ has the following form:

πAj1,...,Ajn
({〈A1 : a1〉} '( · · · '( {〈Am : am〉} '( σG(δf1(R1) '( · · · '( δfk(Rk))).

We use the renaming functions so that the attributes of δft (Rt) are As, . . . , As′, where
s, . . . , s′ are the coordinate positions of Rt in the expression R1 × · · · × Rk and modify F

into G accordingly. In a little more detail, for each r ∈ [1, k] let β(t)=m+#t
s=0arity(Rs),

and let Am+1, . . . , Aβ(k) be new attributes. For each t ∈ [1, k], choose δft so that it maps
the ith attribute of Rt to the attribute Aβ(t−1)+i. To define G, first define the function γ from
coordinate positions to attribute names so that γ (j)= Am+j , extend γ to be the identity on
constants, and extend it further in the natural manner to map unnamed selection formulas
to named selection formulas. Finally, set G= γ (F ). It is now straightforward to verify that
q ′ ≡ q.

It follows immediately from the preceding lemma that the satisfiable SPC algebra and
the satisfiable SPJR algebra are equivalent.

The equivalence between the two algebraic languages and the three logic-based lan-
guages holds with a minor caveat involving the empty query q∅. As noted earlier, the SPC
and SPJR algebras can express q∅, whereas the logic-based languages cannot, unless ex-
tended with equality. Hence the equivalence result is stated for the satisfiable SPC and
SPJR algebras.

Theorem 4.3.3 (i.e., the closure of the rule-based conjunctive queries under composi-
tion) is used in the proof of this result. The closures of the SPC and SPJR algebras under
composition are, of course, immediate.

Theorem 4.4.8 (Equivalence Theorem) The rule-based conjunctive queries, tableau
queries, conjunctive calculus queries, satisfiable SPC algebra, and satisfiable SPJR algebra
are equivalent.

Proof The proof can be accomplished using the following steps:

(i) satisfiable SPC algebra & rule-based conjunctive queries; and

(ii) rule-based conjunctive queries & satisfiable SPC algebra.

We briefly consider how steps (i) and (ii) might be demonstrated; the details are left
to the reader (Exercise 4.15). For (i), it is sufficient to show that each of the SPC algebra
operations can be simulated by a rule. Indeed, then the inclusion follows from the fact that
rule-based conjunctive queries are closed under composition by Theorem 4.3.3 and that
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satisfiable rules with equality can be expressed as rules without equality. The simulation of
algebra operations by rules is as follows:

1. P ×Q, where P and Q are not constant relations, corresponds to ans($x, $y)←
P($x),Q($y), where $x and $y contain no repeating variables; in the case when P

(Q) are constant relations, $x ($y) are the corresponding constant tuples.

2. σF(R) corresponds to ans($x)← R(σF($y)), where $y consists of distinct variables,
σF($y) denotes the vector of variables and constants obtained by merging variables
of $y with other variables or with constants according to the (satisfiable) selection
formula F , and $x consists of the distinct variables in σF($y).

3. πj1...jn(R) corresponds to ans(xj1 . . . xjn)← R(x1 . . . xm), where x1, . . . , xm are
distinct variables.

Next consider step (ii). Let ans($x)← R1($x1), . . . , Rn($xn) be a rule. There is an equiv-
alent SPC algebra query in normal form that involves the cross-product of R1, . . . , Rn, a
selection reflecting the constants and repeating variables occurring in $x1, . . . , $xn, a fur-
ther cross-product with constant relations corresponding to the constants in $x, and finally
a projection extracting the coordinates corresponding to $x.

An alternative approach to showing step (i) of the preceding theorem is explored in
Exercise 4.18.

4.5 Adding Union

As indicated by their name, conjunctive queries are focused on selecting data based on
a conjunction of conditions. Indeed, each atom added to a rule potentially adds a further
restriction to the tuples produced by the rule. In this section we consider a natural mech-
anism for adding a disjunctive capability to the conjunctive queries. Specifically, we add
a union operator to the SPC and SPJR algebras, and we add natural analogs of it to the
rule-based and tableau-based paradigms. Incorporating union into the conjunctive calculus
raises some technical difficulties that are resolved in Chapter 5. This section also consid-
ers the evaluation of queries with union and introduces a more restricted mechanism for
incorporating a disjunctive capability.

We begin with some examples.

Example 4.5.1 Consider the following query:

(4.10) Where can I see “Annie Hall” or “Manhattan”?

Although this cannot be expressed as a conjunctive query (see Exercise 4.22), it is easily
expressed if union is added to the SPJR algebra:

πTheater(σTitle=“Annie Hall”(Pariscope) ∪ σTitle=“Manhattan”(Pariscope)).
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An alternative formulation of this uses an extended selection operator that permits disjunc-
tions in the selection condition:

πTheater(σTitle=“Annie Hall”∨Title=“Manhattan”(Pariscope)).

As a final algebraic alternative, this can be expressed in the original SPJR algebra but
permitting nonsingleton constant relations as base expressions:

πTheater(Pariscope '( {〈Title: “Annie Hall”〉, 〈Title: “Manhattan”〉}).

The rule-based formalism can accommodate this query by permitting more than one rule
with the same relation name in the head and taking the union of their outputs as the answer:

ans(xt)← Pariscope(xt, “Annie Hall”, xs)

ans(xt)← Pariscope(xt, “Manhattan”, xs).

Consider now the following query:

(4.11) What are the films with Allen as actor or director?

This query can be expressed using any of the preceding formalisms, except for the SPJR
algebra extended with nonsingleton constant relations as base expressions (see Exer-
cise 4.22).

Let I1, I2 be two relations with the same arity. As standard in mathematics, I1 ∪ I2

is the relation having this arity and containing the union of the two sets of tuples. The
definition of the SPCU algebra is obtained by extending the definition of the SPC algebra
to include the union operator. The SPJRU algebra is obtained in the same fashion, except
that union can only be applied to expressions having the same sort.

The SPCU and SPJRU algebras can be generalized by extending the selection oper-
ator (and join, in the case of SPC) as before. We can then define normal forms for both
algebras, which are expressions consisting of one or more normal form SPC (SPJR) ex-
pressions combined using a polyadic union operator (see Exercise 4.23). As suggested by
the previous example, disjunction can also be incorporated into selection formulas with no
increase in expressive power (see Exercise 4.22).

Turning now to rule-based conjunctive queries, the simplest way to incorporate the
capability of union is to consider sets of rules all having the same relation name in the
head. These queries are evaluated by taking the union of the output of the individual rules.

This can be generalized without increasing the expressive power by incorporating
something analogous to query composition. A nonrecursive datalog program (nr-datalog
program) over schema R is a set of rules
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S1 ← body1

S2 ← body2

...
Sm← bodym,

where no relation name in R occurs in a rule head; the same relation name may appear
in more than one rule head; and there is some ordering r1, . . . , rm of the rules so that the
relation name in the head of ri does not occur in the body of a rule rj whenever j ≤ i.

The term ‘nonrecursive’ is used because recursion is not permitted. A simple example
of a recursive rule is

ancestor(x, z)← parent(x, y), ancestor(y, z).

A fixpoint operator is used to give the semantics for programs involving such rules. Recur-
sion is the principal topic of Part D.

As in the case of rule-based conjunctive query programs, the query is evaluated on
input I by evaluating each rule in (one of) the order(s) satisfying the foregoing property and
forming unions whenever two rules have the same relation name in their heads. Equality
atoms can be added to these queries, as they were for the rule-based conjunctive queries.

In general, a nonrecursive datalog program P over R is viewed as having a database
schema as target. Program P can also be viewed as mapping from R to a single relation
(see Exercise 4.24).

Turning to tableau queries, a union of tableaux query over schema R (or R) is an
expression of the form ({T1, . . . ,Tn}, u), where n≥ 1 and (Ti, u) is a tableau query over
R for each i ∈ [1, n]. The semantics of these queries is obtained by evaluating the queries
(Ti, u) independently and then taking the union of their results. Equality is incorporated
into these queries by permitting each of the queries (Ti, u) to have equality.

We can now state (see Exercise 4.25) the following:

Theorem 4.5.2 The following have equivalent expressive power:

1. the nonrecursive datalog programs (with single relation target),

2. the SPCU queries,

3. the SPJRU queries.

The union of tableau queries is weaker than the aforementioned languages with union.
This is essentially because the definition of union of tableau queries does not allow separate
summary rows for each tableau in the union. With just one summary row, the nonrecursive
datalog query

ans(a)←
ans(b)←

cannot be expressed as a union of tableaux query.
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As with conjunctive queries, it is easy to show that the conjunctive queries with union
and equality are closed under composition.

Union and the Conjunctive Calculus

At first glance, it would appear that the power of union can be added to the conjunctive
calculus simply by permitting disjunction (denoted ∨) along with conjunction as a binary
connective for formulas. This approach, however, can have serious consequences.

Example 4.5.3 Consider the following “query”:

q = {x, y, z | R(x, y) ∨ R(y, z)}.

Speaking intuitively, the “answer” of q on nonempty instance I will be (using a slight abuse
of notation)

q(I )= (I × dom) ∪ (dom× I ).

This is an infinite set of tuples and thus not an instance according to the formal definition.

Informally, the query q of the previous example is not “safe.” This notion is one of
the central topics that needs to be resolved when using the first-order predicate calculus as
a relational query language, and it is studied in Chapter 5. We return there to the issue of
adding union to the conjunctive calculus (see also Exercise 4.26).
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have also played an important role in dependency theory; this will be discussed in Part C.
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Exercises

Exercise 4.1 Express queries (4.1–4.3) and (4.5–4.9) as (a) rule-based conjunctive queries,
(b) conjunctive calculus queries, (c) tableau queries, (d) SPC expressions, and (e) SPJR expres-
sions.

Exercise 4.2 Let R be a database schema and q a rule.

(a) Prove that q(I) is finite for each instance I over R.

(b) Show an upper bound, given instance I of R and output arity for conjunctive query q,
for the number of tuples that can occur in q(I). Show that this bound can be achieved.

Exercise 4.3 Let R be a database schema and I an instance of R.

(a) Suppose that ϕ is a conjunctive calculus formula over R and ν is a valuation for
free(ϕ). Prove that I |= ϕ[ν] implies that the image of ν is contained in adom(I).

(b) Prove that if q is a conjunctive calculus query over R, then only a finite number
of valuations need to be considered when evaluating q(I). (Note: The presence of
existential quantifiers may have an impact on the set of valuations that need to be
considered.)

Exercise 4.4

(a) Let ϕ and ψ be equivalent conjunctive calculus formulas, and suppose that 9 ′ is the
result of replacing an occurrence of ϕ by ψ in conjunctive calculus formula 9. Prove
that 9 and 9 ′ are equivalent.

(b) Prove that the application of the rewrite rules rename and merge-exists to a conjunc-
tive calculus formula yields an equivalent formula.

(c) Prove that these rules can be used to transform any conjunctive calculus formula into
an equivalent formula in normal form.

Exercise 4.5

(a) Formally define the syntax and semantics of rule-based conjunctive queries with
equality and conjunctive calculus queries with equality.

(b) As noted in the text, logic-based conjunctive queries with equality can generally
yield infinite answers if not properly restricted. Give a definition for range-restricted
rule-based and conjunctive calculus queries with equality that ensures that queries
satisfying this condition always yield a finite answer.

(c) Prove for each rule-based conjunctive query with equality q that either q ≡ q∅ or
q ≡ q ′ for some rule-based conjunctive query q ′ without equality. Give a polynomial
time algorithm that decides whether q ≡ q∅, and if not, constructs an equivalent rule-
based conjunctive query q ′.

(d) Prove that each rule-based conjunctive query with equality but no constants is equiv-
alent to a rule-based conjunctive query without equality.

Exercise 4.6 Extend the syntax of the conjunctive calculus to include equality. Give a syn-
tactic condition that ensures that the answer to a query q on I involves only constants from
adom(q, I) and such that the answer can be obtained by considering only valuations whose
range is contained in adom(q, I).

Exercise 4.7 Give a proof of Theorem 4.3.3.
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Exercise 4.8

(a) Give a formal definition for the semantics of the SPC algebra.

(b) Give a formal definition for the syntax and semantics of the SPJR algebra.

Exercise 4.9 Consider the algebra consisting of all SPJR queries in which constants do not
occur.

(a) Define a normal form for this algebra.

(b) Is this algebra closed under composition?

(c) Is this algebra equivalent to the rule-based conjunctive queries without constants or
equality?

Exercise 4.10 Under the named perspective, a selection operator is constant based if it has
the form σA=a, where A ∈ att and a ∈ dom. Prove or disprove: Each SPJR algebra expression
is equivalent to an SPJR algebra expression all of whose selection operators are constant based.

Exercise 4.11 Prove that queries (4.6 and 4.8) cannot be expressed using the SPJ algebra (i.e.,
that renaming is needed).

Exercise 4.12

(a) Prove that the set of SPC transformations presented after the statement of Proposi-
tion 4.4.2 is sound (i.e., preserves equivalence).

(b) Prove Proposition 4.4.2.

(c) Prove that each SPJR query is equivalent to one in normal form. In particular, exhibit
a set of equivalence-preserving SPJR algebra transformations used to demonstrate
this result.

Exercise 4.13

(a) Prove that the nonempty 0-ary relation is the left and right identity for cross product
and for natural join.

(b) Prove that for a fixed relation schema S, there is an identity for union for relations
over S. What if S is not fixed?

(c) Let S be a relational schema. For the binary operations α ∈ {'(,∪}, does there exist
a relation I such that IαJ = I for each relation J over S?

Exercise 4.14 Complete the proof of Lemma 4.4.7 by showing the inclusion SPJR algebra &
SPC algebra.

Exercise 4.15

(a) Prove Proposition 4.2.9.

(b) Complete the proof of Theorem 4.4.8.

Exercise 4.16 Consider the problem of defining restricted versions of the SPC and SPJR
algebras that are equivalent to the rule-based conjunctive queries without equality. Find natural
restricted versions, or explain why they do not exist.

Exercise 4.17 Let q be a tableau query and q ′ the SPC query corresponding to it via the trans-
lation sketched in Theorem 4.4.8. If q has r rows and q ′ has j joins of database (nonconstant)
relations, show that j = r − 1.
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♠Exercise 4.18

(a) Develop an inductive algorithm that translates a satisfiable SPC query q into a tableau
query by associating a tableau query to each subquery of q.

(b) Do the same for SPJR queries.

(c) Show that if q is a satisfiable SPC (SPRJ) query with n joins (not counting joins
involving constant relations), then the tableau of the corresponding tableau query
has n+ 1 rows.

♠Exercise 4.19 [ASU79b] This exercise examines the connection between typed tableaux and
a subset of the SPJ algebra. A typed restricted SPJ algebra expression over R is an SPJR algebra
expression that uses only [R] as base expressions and only constant-based selection (i.e., having
the form σA=a for constant a), projection, and (natural) join as operators.

(a) Describe a natural algorithm that maps typed restricted SPJ queries q over R into
equivalent typed tableau queries q ′ = (T , u) over R, where |T | = (the number of
join operations in q) + 1.

(b) Show that q = ({〈x, y1〉, 〈x1, y1〉, 〈x1, y〉}, 〈x, y〉) is not the image of any typed re-
stricted SPJ query under the algorithm of part (a).

J (c) [ASSU81] Prove that the tableau query q of part (b) is not equivalent to any typed
restricted SPJ algebra expression.

Exercise 4.20 [ASU79b] A typed tableau query q = (T , u) with T over relation R is repeat
restricted if

1. If A ∈ sort(u), then no variable in πA(T )− {u(A)} occurs more than once in T .

2. If A �∈ sort(u), then at most one variable in πA(T ) occurs more than once in T .

Prove that if q = (T , u) is a typed repeat-restricted tableau query over R, then there is a typed
restricted SPJ query q ′ such that the image of q ′ under the algorithm of Exercise 4.19 part (a) is
q.

Exercise 4.21 Extend Proposition 4.2.2 to include disjunction (i.e., union).

Exercise 4.22 The following query is used in this exercise:

(4.15) Produce a binary relation that includes all tuples 〈t , “excellent”〉 where t is a movie
directed by Allen, and all tuples 〈t , “superb”〉 where t is a movie directed by Hitch-
cock.

(a) Show that none of queries (4.10–4.15) can be expressed using the SPC or SPJR
algebras.

A positive selection formula for the SPC and SPJR algebras is a selection formula as before,
except that disjunction can be used in addition to conjunction. Define the S+PC algebra to be
the SPC algebra extended to permit arbitrary positive selection operators; and define the S+PJR
algebra analogously.

(b) Determine which of queries (4.10–4.15) can be expressed using the S+PJR algebra.

Define the SPC-1* algebra to be the SPC algebra, except that nonsingleton unary constant
relations can be used as base queries; and define the SPC-n* algebra to be the SPC algebra,
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except that nonsingleton constant relations of arbitrary arity can be used as base queries. Define
the SPJR-1∗ and SPJR-n∗ algebras analogously.

(c) Determine which of queries (4.10–4.15) can be expressed using the SPJR-1∗ and
SPJR-n∗ algebras.

(d) Determine the relative expressive powers of the S+PC, SPC-1∗, SPC-n∗, and SPCU
algebras.

Exercise 4.23 Give precise definitions for normal forms for the SPCU and SPJRU algebras,
and prove that all expressions from these algebras have an equivalent in normal form.

Exercise 4.24 An nr-datalog program P is in normal form if all relation names in rule heads
are identical. Prove that each nonrecursive datalog query with single relation target has an
equivalent in normal form.

Exercise 4.25 Prove Theorem 4.5.2.

JExercise 4.26 Recall the discussion in Section 4.5 about disjunction in the conjunctive
calculus.

(a) Consider the query q = {x|ϕ(x)}, where

ϕ(x)≡ R(x) ∧ ∃y, z(S(y, x) ∨ S(x, z)).

Let I be an instance over {R, S}. Using the natural extension of the notion of satisfies
to disjunction, show for each subformula of ϕ with form ∃ωψ , and each valuation ν

over free(∃ωψ) with range contained in adom(I) that: there exists c ∈ dom such that
I |= ψ[ν ∪ {w/c}] iff there exists c ∈ adom(I) such that I |= ψ[ν ∪ {w/c}]. Conclude
that this query can be evaluated by considering only valuations whose range is
contained in adom(I).

(b) The positive existential (relational) calculus is the relational calculus query language
in which query formulas are constructed using∧,∨, ∃. Define a condition on positive
existential calculus queries that guarantees that the answer involves only constants
from adom(q, I) and such that the answer can be obtained by considering only
valuations whose range is contained in adom(q, I). Extend the restriction for the case
when equality is allowed in the calculus.

(c) Prove that the family of restricted positive existential calculus queries defined in the
previous part has expressive power equivalent to the rule-based conjunctive queries
with union and that this result still holds if equality is added to both families of
queries.

Exercise 4.27

(a) Consider as an additional algebraic operation, the difference. The semantics of
q − q ′ is given by [q − q ′](I) = q(I) − q ′(I). Show that the difference cannot be
simulated in the SPCU or SPJRU algebras. (Hint: Use the monotonicity property of
these algebras.)

(b) Negation can be added to (generalized) selection formulas in the natural way—that
is, if γ is a selection formula, then so is (¬γ ). Give a precise definition for the
syntax and semantics of selection with negation. Prove that the SPCU algebra cannot
simulate selections of the form σ¬1=2(R) or σ¬1=a(R).
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Exercise 4.28 Show that intersection can be expressed in the SPC algebra.

JExercise 4.29

(a) Prove that there is no redundant operation in the set χ = {σ, π,×,∪} of unnamed
algebra operators (i.e., for each operator α in the set, exhibit a schema and an
algebraic query q over that schema such that q cannot be expressed with χ − {α}).

(b) Prove the analogous result for the set of named operators {σ, π, '(, δ,∪}.
Exercise 4.30 An inequality atom is an expression of the form x �= y or x �= a, where x, y

are variables and a is a constant. Assuming that the underlying domain has a total order, a
comparison atom is an expression of the form xθy, xθa, or aθx, where θ ranges over <, ≤, >,
and ≥.

(a) Show that the family of rule-based conjunctive queries with equality and inequality
strictly dominates the family of rule-based conjunctive queries with equality.

(b) Assuming that the underlying domain has a total order, describe the relationships
between the expressive powers of the family of rule-based conjunctive queries with
equality; the family of rule-based conjunctive queries with equality and inequality;
the family of rule-based conjunctive queries with equality and comparison atoms;
and the family of rule-based conjunctive queries with equality, inequality, and com-
parison atoms.

(c) Develop analogous extensions and results for tableau queries, the conjunctive calcu-
lus, and SPC and SPJR algebras.

JExercise 4.31 For some films, we may not want to store any actor name. Add to the domain a
constant ⊥ meaning unknown information. Propose an extension of the SPJR queries to handle
unknown information (see Chapter 19).



5 Adding Negation: Algebra
and Calculus

Alice: Conjunctive queries are great. But what if I want to see a movie that
doesn’t feature Woody Allen?

Vittorio: We have to introduce negation.
Sergio: It is basically easy.

Riccardo: But the calculus is a little feisty.

As indicated in the previous chapter, the conjunctive queries, even if extended by union,
cannot express queries such as the following:

(5.1) What are the Hitchcock movies in which Hitchcock did not play?

(5.2) What movies are featured at the Gaumont Opera but not at the Gaumont les
Halles?

(5.3) List those movies for which all actors of the movie have acted under Hitchcock’s
direction.

This chapter explores how negation can be added to all forms of the conjunctive queries
(except for the tableau queries) to provide the power needed to express such queries. This
yields languages in the various paradigms that have the same expressive power. They in-
clude relational algebra, relational calculus, and nonrecursive datalog with negation. The
class of queries they express is often referred to as the first-order queries because relational
calculus is essentially first-order predicate calculus without function symbols. These lan-
guages are of fundamental importance in database systems. They provide adequate power
for many applications and at the same time can be implemented with reasonable efficiency.
They constitute the basis for the standard commercial relational languages, such as SQL.

In the case of the algebras, negation is added using the set difference operator, yielding
the language(s) generally referred to as relational algebra (Section 5.1). In the case of
the rule-based paradigm, we consider negative literals in the bodies of rules, which are
interpreted as the absence of the corresponding facts; this yields nonrecursive datalog¬
(Section 5.2).

Adding negation in the calculus paradigm raises some serious problems that require
effort and care to resolve satisfactorily. In the development in this chapter, we proceed in
two stages. First (Section 5.3) we introduce the calculus, illustrate the problematic issues of
“safety” and domain independence, and develop some simple solutions for them. We also
show the equivalence between the algebra and the calculus at this point. The material in this
section provides a working knowledge of the calculus that is adequate for understanding
the study of its extensions in Parts D and E. The second stage in our study of the calculus
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(Section 5.4) focuses on the important problem of finding syntactic restrictions on the
calculus that ensure domain independence.

The chapter concludes with brief digressions concerning how aggregate functions can
be incorporated into the algebra and calculus (Section 5.5), and concerning the emerging
area of constraint databases, which provide a natural mechanism for representing and
manipulating infinite databases in a finite manner (Section 5.6).

From the theoretical perspective, the most important aspects of this chapter include
the demonstration of the equivalence of the algebra and calculus (including a relatively
direct transformation of calculus queries into equivalent algebra ones) and the application
of the classical proof technique of structural induction used on both calculus formulas and
algebra expressions.

5.1 The Relational Algebras

Incorporating the difference operator, denoted ‘−’, into the algebras is straightforward. As
with union and intersection, this can only be applied to expressions that have the same sort,
in the named case, or arity, in the unnamed case.

Example 5.1.1 In the named algebra, query (5.1) is expressed by

πTitleσDirector=“Hitchcock”(Movies)− πTitleσActor=“Hitchcock”(Movies).

The unnamed relational algebra is obtained by adding the difference operator to the
SPCU algebra. It is conventional also to permit the intersection operator, denoted ‘∩’ in
this algebra, because it is simulated easily using cross-product, select, and project or using
difference (see Exercise 5.4). Because union is present, nonsingleton constant relations
may be used in this algebra. Finally, the selection operator can be extended to permit
negation (see Exercise 5.4).

The named relational algebra is obtained in an analogous fashion, and similar gener-
alizations can be developed.

As shown in Exercise 5.5, the family of unnamed algebra operators {σ, π,×,∪,−} is
nonredundant, and the same is true for the named algebra operators {σ, π, '(, δ,∪,−}. It
is easily verified that the algebras are not monotonic, nor are all algebra queries satisfiable
(see Exercise 5.6). In addition, the following is easily verified (see Exercise 5.7):

Proposition 5.1.2 The unnamed and named relational algebras have equivalent
expressive power.

The notion of composition of relational algebra queries can be defined in analogy
to the composition of conjunctive queries described in the previous chapter. It is easily
verified that the relational algebras, and hence the other equivalent languages presented in
this chapter, are closed under composition.



72 Adding Negation: Algebra and Calculus

5.2 Nonrecursive Datalog with Negation

To obtain a rule-based language with expressive power equivalent to the relational algebra,
we extend nonrecursive datalog programs by permitting negative literals in rule bodies.
This yields the nonrecursive datalog with negation also denoted nonrecursive datalog¬
and nr-datalog¬.

A nonrecursive datalog¬ (nr-datalog¬) rule is a rule of the form

q : S(u)← L1, . . . , Ln,

where S is a relation name, u is a free tuple of appropriate arity, and each Li is a literal [i.e.,
an expression of the form R(v) or ¬R(v), where R is a relation name and v is a free tuple
of appropriate arity and where S does not occur in the body]. This rule is range restricted
if each variable x occurring in the rule occurs in at least one literal of the form R(v) in
the rule body. Unless otherwise specified, all datalog¬ rules considered are assumed to be
range restricted.

To give the semantics of the foregoing rule q, let R be a relation schema that includes
all of the relation names occurring in the body of the rule q, and let I be an instance of R.
Then the image of I under q is

q(I)= {ν(u) | ν is a valuation and for each i ∈ [1, n],

ν(ui) ∈ I(Ri), if Li = Ri(ui), and

ν(ui) �∈ I(Ri), if Li =¬Ri(ui)}.

In general, this image can be expressed as a difference q1 − q2, where q1 is an SPC query
and q2 is an SPCU query (see Exercise 5.9).

Equality may be incorporated by permitting literals of the form s = t and s �= t for
terms s and t . The notion of range restriction in this context is defined as it was for rule-
based conjunctive queries with equality. The semantics are defined in the natural manner.

To obtain the full expressive power of the relational algebras, we must consider sets
of nr-datalog¬ rules; these are analogous to the nr-datalog programs introduced in the
previous chapter. A nonrecursive datalog¬ program (with or without equality) over schema
R is a sequence

S1 ← body1

S2 ← body2

...
Sm← bodym

of nr-datalog¬ rules, where no relation name in R occurs in a rule head; the same relation
name may appear in more than one rule head; and there is some ordering r1, . . . , rm of
the rules so that the relation name in the head of a rule ri does not occur in the body
of a rule rj whenever j ≤ i. The semantics of these programs are entirely analogous to
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the semantics of nr-datalog programs. An nr-datalog¬ query is a query defined by some
nr-datalog¬ program with a specified target relation.

Example 5.2.1 Assume that each movie in Movies has one director. Query (5.1) is
answered by

ans(x)←Movies(x, “Hitchcock”, z),

¬Movies(x, “Hitchcock”, “Hitchcock”).

Query (5.3) is answered by

Hitch-actor(z)←Movies(x, “Hitchcock”, z)

not-ans(x)←Movies(x, y, z), ¬Hitch-actor(z)

ans(x)←Movies(x, y, z), ¬not-ans(x).

Care must be taken when forming nr-datalog¬ programs. Consider, for example, the fol-
lowing program, which forms a kind of merging of the first two rules of the previous
program. (Intuitively, the first rule is a combination of the first two rules of the preceding
program, using variable renaming in the spirit of Example 4.3.1.)

bad-not-ans(x)←Movies(x, y, z), ¬Movies(x′, “Hitchcock”, z),

Movies(x′, “Hitchcock”, z′),
ans(x)←Movies(x, y, z), ¬bad-not-ans(x)

Rather than expressing query (5.3), it expresses the following:

(5.3′) (Assuming that all movies have only one director) list those movies for which all
actors of the movie acted in all of Hitchcock’s movies.

It is easily verified that each nr-datalog¬ program with equality can be simulated by
an nr-datalog¬ program not using equality (see Exercise 5.10). Furthermore (see Exer-
cise 5.11), the following holds:

Proposition 5.2.2 The relational algebras and the family of nr-datalog¬ programs that
have single relation output have equivalent expressive power.

5.3 The Relational Calculus

Adding negation in the calculus paradigm yields an extremely flexible query language,
which is essentially the predicate calculus of first-order logic (without function symbols).
However, this flexibility brings with it a nontrivial cost: If used without restriction, the
calculus can easily express queries whose “answers” are infinite. Much of the theoretical
development in this and the following section is focused on different approaches to make
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the calculus “safe” (i.e., to prevent this and related problems). Although considerable effort
is required, it is a relatively small price to pay for the flexibility obtained.

This section first extends the syntax of the conjunctive calculus to the full calculus.
Then some intuitive examples are presented that illustrate how some calculus queries can
violate the principle of “domain independence.” A variety of approaches have been devel-
oped to resolve this problem based on the use of both semantic and syntactic restrictions.

This section focuses on semantic restrictions. The first step in understanding these
is a somewhat technical definition based on “relativized interpretation” for the semantics
of (arbitrary) calculus queries; the semantics are defined relative to different “underlying
domains” (i.e., subsets of dom). This permits us to give a formal definition of domain
independence and leads to a family of different semantics for a given query.

The section closes by presenting the equivalence of the calculus under two of the se-
mantics with the algebra. This effectively closes the issue of expressive power of the calcu-
lus, at least from a semantic point of view. One of the semantics for the calculus presented
here is the “active domain” semantics; this is particularly convenient in the development of
theoretical results concerning the expressive power of a variety of languages presented in
Parts D and E.

As noted in Chapter 4, the calculus presented in this chapter is sometimes called the
domain calculus because the variables range over elements of the underlying domain of
values. Exercise 5.23 presents the tuple calculus, whose variables range over tuples, and
its equivalence with the domain calculus and the algebra. The tuple calculus and its variants
are often used in practice. For example, the practical languages SQL and Quel can be
viewed as using tuple variables.

Well-Formed Formulas, Revisited

We obtain the relational calculus from the conjunctive calculus with equality by adding
negation (¬), disjunction (∨), and universal quantification (∀). (Explicit equality is needed
to obtain the full expressive power of the algebras; see Exercise 5.12.) As will be seen, both
disjunction and universal quantification can be viewed as consequences of adding negation,
because ϕ ∨ ψ ≡¬(¬ϕ ∧ ¬ψ) and ∀xϕ ≡¬∃x¬ϕ.

The formal definition of the syntax of the relational calculus is a straightforward
extension of that for the conjunctive calculus given in the previous chapter. We include
the full definition here for the reader’s convenience. A term is a constant or a variable. For
a given input schema R, the base formulas include, as before, atoms over R and equality
(inequality) atoms of the form e = e′ (e �= e′) for terms e, e′. The (well-formed) formulas
of the relational calculus over R include the base formulas and formulas of the form

(a) (ϕ ∧ ψ), where ϕ and ψ are formulas over R;

(b) (ϕ ∨ ψ), where ϕ and ψ are formulas over R;

(c) ¬ϕ, where ϕ is a formula over R;

(d) ∃xϕ, where x is a variable and ϕ a formula over R;

(e) ∀xϕ, where x is a variable and ϕ a formula over R.

As with conjunctive calculus,
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∃x1, x2, . . . , xmϕ abbreviates ∃x1∃x2 . . . ∃xmϕ, and

∀x1, x2, . . . , xmϕ abbreviates∀x1∀x2 . . .∀xmϕ.
It is sometimes convenient to view the binary connectives∧ and∨ as polyadic connectives.
In some contexts, e �= e′ is viewed as an abbreviation of ¬(e = e′).

It is often convenient to include two additional logical connectives, implies (→) and
is equivalent to (↔). We view these as syntactic abbreviations as follows:

ϕ→ ψ ≡¬ϕ ∨ ψ

ϕ↔ ψ ≡ (ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ).
The notions of free and bound occurrences of variables in a formula, and of free(ϕ)

for formula ϕ, are defined analogously to their definition for the conjunctive calculus. In
addition, the notion of relational calculus query is defined, in analogy to the notion of
conjunctive calculus query, to be an expression of the form

{〈e1, . . . , em〉 : A1, . . . , Am | ϕ}, in the named perspective,

{e1, . . . , em | ϕ}, in the unnamed perspective,

or if the sort is understood from the context,

where e1, . . . , em are terms, repeats permitted, and where the set of variables occurring in
e1, . . . , em is exactly free(ϕ).

Example 5.3.1 Suppose that each movie has just one director. Query (5.1) can be ex-
pressed in the relational calculus as

{xt | ∃xaMovies(xt , “Hitchcock”, xa) ∧
¬Movies(xt , “Hitchcock”, “Hitchcock”)}.

Query (5.3) is expressed by

{xt | ∃xd, xa Movies(xt, xd, xa) ∧
∀ya (∃ydMovies(xt, yd, ya)

→∃zt Movies(zt , “Hitchock”, ya))}.
The first conjunct ensures that the variable xt ranges over titles in the current value of
Movies, and the second conjunct enforces the condition on actors of the movie identified
by xt .

“Unsafe” Queries

Before presenting the alternative semantics for the relational calculus, we present an in-
tuitive indication of the kinds of problems that arise if the conventional definitions from
predicate calculus are adapted directly to the current context.
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The fundamental problems of using the calculus are illustrated by the following ex-
pressions:

(unsafe-1) {x | ¬Movies(“Cries and Whispers”, “Bergman”, x)}
(unsafe-2) {x, y |Movies(“Cries and Whispers”, “Bergman”, x)

∨ Movies(y, “Bergman”, “Ullman”)}.

If the usual semantics of predicate calculus are adapted directly to this context, then
the query (unsafe-1) produces all tuples 〈a〉 where a ∈ dom and 〈“Cries and Whispers”,
“Bergman”, a〉 is not in the input. Because all input instances are by definition finite, the
query yields an infinite set on all input instances. The same is true of query (unsafe-2), even
though it does not use explicit negation.

An intuitively appealing approach to resolving this problem is to view the different
relation columns as typed and to insist that variables occurring in a given column range
over only values of the appropriate type. For example, this would imply that the answer to
query (unsafe-1) is restricted to the set of actors. This approach is not entirely satisfactory
because query answers now depend on the domains of the types. For example, different
answers are obtained if the type Actor includes all and only the current actors [i.e., persons
occurring in πActor(Movies)] or includes all current and potential actors. This illustrates
that query (unsafe-1) is not independent of the underlying domain within which the query
is interpreted (i.e., it is not “domain independent”). The same is true of query (unsafe-2).

Even if the underlying domain is finite, users will typically not know the exact contents
of the domains used for each variable. In this case it would be disturbing to have the result
of a user query depend on information not directly under the user’s control. This is another
argument for permitting only domain-independent queries.

A related but more subtle problem arises with regard to the interpretation of quantified
variables. Consider the query

(unsafe-3) {x | ∀yR(x, y)}.

The answer to this query is necessarily finite because it is a subset of π1(R). However, the
query is not domain independent. To see why, note that if y is assumed to range over all
of dom, then the answer is always the empty relation. On the other hand, if the underlying
domain of interpretation is finite, it is possible that the answer will be nonempty. (This
occurs, for example, if the domain is {1, . . . , 5}, and the input for R is {〈3, 1〉, . . . 〈3, 5〉}.)
So again, this query depends on the underlying domain(s) being used (for the different
variables) and is not under the user’s control.

There is a further difficulty of a more practical nature raised by query (unsafe-3).
Specifically, if the intuitively appealing semantics of the predicate calculus are used, then
the naive approach to evaluating quantifiers leads to the execution of potentially infinite
procedures. Although the proper answer to such queries can be computed in a finite manner
(see Theorem 5.6.1), this is technically intricate.

The following example indicates how easy it is to form an unsafe query mistakenly in
practice.
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Example 5.3.2 Recall the calculus query answering query (5.3) in Example 5.3.1. Sup-
pose that the first conjunct of that query is omitted to obtain the following:

{xt | ∀ya(∃ydMovies(xt, yd, ya)

→∃ztMovies(zt , “Hitchcock”, ya))}.

This query returns all titles of movies that have the specified property and also all elements
of dom not occurring in πTitle(Movies). Even if xt were restricted to range over the set of
actual and potential movie titles, it would not be domain independent.

Relativized Interpretations

We now return to the formal development. As the first step, we present a definition that will
permit us to talk about calculus queries in connection with different underlying domains.

Under the conventional semantics associated with predicate calculus, quantified vari-
ables range over all elements of the underlying domain, in our case, dom. For our purposes,
however, we generalize this notion to permit explicit specification of the underlying domain
to use (i.e., over which variables may range).

A relativized instance over schema R is a pair (d, I), where I is an instance over R and
adom(I)⊆ d⊆ dom. A calculus formula ϕ is interpretable over (d,I) if adom(ϕ)⊆ d. In
this case, if ν is a valuation over free(ϕ) with range contained in d, then I satisfies ϕ for ν
relative to d, denoted I |=d ϕ[ν], if

(a) ϕ = R(u) is an atom and ν(u) ∈ I(R);

(b) ϕ = (s = s′) is an equality atom and ν(s)= ν(s′);
(c) ϕ = (ψ ∧ ξ) and1 I |=d ψ[ν|free(ψ)] and I |=d ξ [ν|free(ξ)];

(d) ϕ = (ψ ∨ ξ) and I |=d ψ[ν|free(ψ)] or I |=d ξ [ν|free(ξ)];

(e) ϕ =¬ψ and I �|=d ψ[ν] (i.e., I |=d ψ[ν] does not hold);

(f) ϕ = ∃xψ and for some c ∈ d, I |=d ψ[ν ∪ {x/c}]; or

(g) ϕ = ∀xψ and for each c ∈ d, I |=d ψ[ν ∪ {x/c}].
The notion of “satisfies . . . relative to” just presented is equivalent to the usual notion

of satisfaction found in first-order logic, where the set d plays the role of the universe of
discourse in first-order logic. In practical database settings it is most natural to assume that
the underlying universe is dom; for this reason we use specialized terminology here.

Recall that for a query q and input instance I, we denote adom(q) ∪ adom(I) by
adom(q, I), and the notation adom(ϕ, I) for formula ϕ is defined analogously.

We can now define the relativized semantics for the calculus. Let R be a schema,
q = {e1, . . . , en | ϕ} a calculus query over R, and (d, I) a relativized instance over R. Then

1 ν|V for variable set V denotes the restriction of ν to V .
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the image of I under q relative to d is

qd(I)= {ν(〈e1, . . . , en〉) | I |=d ϕ[ν],

ν is a valuation over free(ϕ) with range⊆ d}.
Note that if d is infinite, then this image may be an infinite set of tuples.

As a minor generalization, for arbitrary d ⊆ dom, the image of q on I relative to d is
defined by2

qd(I)= qd∪adom(q,I)(I).

Example 5.3.3 Consider the query

q = {x | R(x) ∧ ∃y(¬R(y) ∧ ∀z(R(z) ∨ z= y))}

Then

qdom(I )= {} for any instance I over R

q{1,2,3,4}(J1)= {} for J1 = {〈1〉, 〈2〉} over R

q{1,2,3,4}(J2)= J2 for J2 = {〈1〉, 〈2〉, 〈3〉} over R

q{1,2,3,4}(J3)= {} for J3 = {〈1〉, 〈2〉, 〈3〉, 〈4〉} over R

q{1,2,3,4}(J4)= J4 for J4 = {〈1〉, 〈2〉, 〈3〉, 〈5〉} over R.

This illustrates that under an interpretation relative to a set d, a calculus query q on input I
may be affected by |d− adom(q, I)|.

It is important to note that the semantics of algebra and datalog¬ queries q evaluated
on instance I are independent of whether dom or some subset d satisfying adom(q, I)⊆
d⊆ dom is used as the underlying domain.

The Natural and Active Domain Semantics for Calculus Queries

The relativized semantics for calculus formulas immediately yields two important seman-
tics for calculus queries. The first of these corresponds most closely to the conventional
interpretation of predicate calculus and is thus perhaps the intuitively most natural seman-
tics for the calculus.

Definition 5.3.4 For calculus query q and input instance I, the natural (or unrestricted)
interpretation of q on I, denoted qnat(I), is qdom(I) if this is finite and is undefined other-
wise.

2 Unlike the convention of first-order logic, interpretations over an empty underlying domain are
permitted; this arises only with empty instances.
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The second interpretation is based on restricting quantified variables to range over the
active domain of the query and the input. Although this interpretation is unnatural from the
practical perspective, it has the advantage that the output is always defined (i.e., finite). It
is also a convenient semantics for certain theoretical developments.

Definition 5.3.5 For calculus query q and input instance I, the active domain interpre-
tation of q on I, denoted qadom(I), is qadom(q,I)(I). The family of mappings obtained from
calculus queries under the active domain interpretation is denoted CALCadom.

Example 5.3.6 Recall query (unsafe-2). Under the natural interpretation on input the
instance I shown in Chapter 3, this query yields the undefined result. On the other hand,
under the active domain interpretation this yields as output (written informally) ({actors
in “Cries and Whispers”} × adom(I)) ∪ (adom(I) × {movies by Bergman featuring
Ullman}), which is finite and defined.

Domain Independence

As noted earlier, there are two difficulties with the natural interpretation of the calculus
from a practical point of view: (1) it is easy to write queries with undefined output, and (2)
even if the output is defined, the naive approach to computing it may involve consideration
of quantifiers ranging over an infinite set. The active domain interpretation solves these
problems but generally makes the answer dependent on information (the active domain)
not readily available to users. One approach to resolving this situation is to restrict attention
to the class of queries that yield the same output on all possible underlying domains.

Definition 5.3.7 A calculus query q is domain independent if for each input instance I,
and each pair d, d′ ⊆ dom, qd(I)= qd′(I). If q is domain independent, then the image of q
on input instance I, denoted simply q(I), is qdom(I) [or equivalently, qadom(I)]. The family
of mappings obtained from domain-independent calculus queries is denoted CALCdi.

In particular, if q is domain independent, then the output according to the natural
interpretation can be obtained by computing the active domain interpretation. Thus,

Lemma 5.3.8 CALCdi & CALCadom.

Example 5.3.9 The two calculus queries of Example 5.3.1 are domain independent, and
the query of Example 5.3.2 is not (see Exercise 5.15).

Equivalence of Algebra and Calculus

We now demonstrate the equivalence of the various languages introduced so far in this
chapter.
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Theorem 5.3.10 (Equivalence Theorem) The domain-independent calculus, the calcu-
lus under active domain semantics, the relational algebras, and the family of nr-datalog¬
programs that have single-relation output have equivalent expressive power.

Proposition 5.2.2 shows that nr-datalog¬ and the algebras have equivalent expressive
power. In addition, Lemma 5.3.8 shows that CALCdi & CALCadom. To complete the proof,
we demonstrate that

(i) algebra & CALCdi (Lemma 5.3.11)

(ii) CALCadom & algebra (Lemma 5.3.12).

Lemma 5.3.11 For each unnamed algebra query, there is an equivalent domain-indepen-
dent calculus query.

Proof Let q be an unnamed algebra query with arity n. We construct a domain-
independent query q ′ = {x1, . . . , xn | ϕq} that is equivalent to q. The formula ϕq is con-
structed using an induction on subexpressions of q. In particular, for subexpression E of
q, we define ϕE according to the following cases:

(a) E is R for some R ∈ R: ϕE is R(x1, . . . , xarity(R)).

(b) E is {u1, . . . , um}, where each uj is a tuple of arity α: ϕE is

(x1 = u1(1) ∧ · · · ∧ xα = u1(α)) ∨ · · · ∨ (x1 = um(1) ∧ · · · ∧ xα = um(α)).

(c) E is σF(E1): ϕE is ϕE1 ∧ ψF , where ψF is the formula obtained from F by
replacing each coordinate identifier i by variable xi.

(d) E is πi1,...,in(E1): ϕE is

∃yi1, . . . , yin((x1 = yi1 ∧ · · · ∧ xn = yin) ∧ ∃yj1 . . . ∃yjlϕE1(y1, . . . , yarity(E1))),

where j1, . . . , jl is a listing of [1, arity(E1)]− {i1, . . . , in}.
(e) E is E1 × E2: ϕE is ϕE1 ∧ ϕE2(xarity(E1)+1, . . . , xarity(E1)+arity(E2)).

(f) E is E1 ∪ E2: ϕE is ϕE1 ∨ ϕE2.

(g) E is E1 − E2: ϕE is ϕE1 ∧ ¬ϕE2.

We leave verification of this construction and the properties of q ′ to the reader (see Exer-
cise 5.13a).

Lemma 5.3.12 For each calculus query q, there is a query in the unnamed algebra that is
equivalent to q under the active domain interpretation.

Crux Let q = {x1, . . . , xn | ϕ} be a calculus query over R. It is straightforward to develop
a unary algebra query Eadom such that for each input instance I,
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Eadom(I)= {〈a〉 | a ∈ adom(q, I)}.

Next an inductive construction is performed. To each subformula ψ(y1, . . . , ym) of ϕ this
associates an algebra expression Eψ with the property that (abusing notation slightly)

{y1, . . . , ym | ψ}adom(q,I)(I)= Eψ(I) ∩ (adom(q, I))m.

[This may be different from using the active domain semantics on ψ , because we may have
adom(ψ, I) ⊂ adom(q, I).] It is clear that Eϕ is equivalent to q under the active domain
semantics.

We now illustrate a few cases of the construction of expressions Eψ and leave the
rest for the reader (see Exercise 5.13b). Suppose that ψ is a subformula of ϕ. Then Eψ is
constructed in the following manner:

(a) ψ(y1, . . . , ym) is R(t1, . . . , tl), where each ti is a constant or in $y: Then Eψ ≡
π$k(σF (R)), where $k and F are chosen in accordance with $y and $t .

(b) ψ(y1, y2) is y1 �= y2: Eψ is σ1�=2(Eadom × Eadom).

(c) ψ(y1, y2, y3) is ψ ′(y1, y2)∨ψ ′′(y2, y3): Eψ is (Eψ ′ ×Eadom)∪ (Eadom×Eψ ′′).

(d) ψ(y1, . . . , ym) is ¬ψ ′(y1, . . . , ym): Eψ is (Eadom × · · · × Eadom)− Eψ ′.

5.4 Syntactic Restrictions for Domain Independence

As seen in the preceding section, to obtain the natural semantics for calculus queries,
it is desirable to focus on domain independent queries. However, as will be seen in the
following chapter (Section 6.3), it is undecidable whether a given calculus query is domain
independent. This has led researchers to develop syntactic conditions that ensure domain
independence, and many such conditions have been proposed.

Several criteria affect the development of these conditions, including their generality,
their simplicity, and the ease with which queries satisfying the conditions can be translated
into the relational algebra or other lower-level representations. We present one such con-
dition here, called “safe range,” that is relatively simple but that illustrates the flavor and
theoretical properties of many of these conditions. It will serve as a vehicle to illustrate
one approach to translating these restricted queries into the algebra. Other examples are
explored in Exercises 5.25 and 5.26; translations of these into the algebra are considerably
more involved.

This section begins with a brief digression concerning equivalence preserving rewrite
rules for the calculus. Next the family CALCsr of safe-range queries is introduced. It is
shown easily that the algebra & CALCsr . A rather involved construction is then presented
for transforming safe-range queries into the algebra. The section concludes by defining a
variant of the calculus that is equivalent to the conjunctive queries with union.
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1 ϕ ∧ ψ ↔ ψ ∧ ϕ

2 ψ1 ∧ · · · ∧ ψn ∧ (ψn+1 ∧ ψn+2) ↔ ψ1 ∧ · · · ∧ ψn ∧ ψn+1 ∧ ψn+2

3 ϕ ∨ ψ ↔ ψ ∨ ϕ

4 ψ1 ∨ · · · ∨ ψn ∨ (ψn+1 ∨ ψn+2) ↔ ψ1 ∨ · · · ∨ ψn ∨ ψn+1 ∨ ψn+2

5 ¬(ϕ ∧ ψ) ↔ (¬ϕ) ∨ (¬ψ)
6 ¬(ϕ ∨ ψ) ↔ (¬ϕ) ∧ (¬ψ)
7 ¬(¬ϕ) ↔ ϕ

8 ∃xϕ ↔ ¬∀x¬ϕ
9 ∀xϕ ↔ ¬∃x¬ϕ

10 ¬∃xϕ ↔ ∀x¬ϕ
11 ¬∀xϕ ↔ ∃x¬ϕ
12 ∃xϕ ∧ ψ ↔ ∃x(ϕ ∧ ψ) (x not free in ψ)
13 ∀xϕ ∧ ψ ↔ ∀x(ϕ ∧ ψ) (x not free in ψ)
14 ∃xϕ ∨ ψ ↔ ∃x(ϕ ∨ ψ) (x not free in ψ)
15 ∀xϕ ∨ ψ ↔ ∀x(ϕ ∨ ψ) (x not free in ψ)
16 ∃xϕ ↔ ∃yϕxy (y not free in ϕ)
17 ∀xϕ ↔ ∀yϕxy (y not free in ϕ)

Figure 5.1: Equivalence-preserving rewrite rules for calculus formulas

Equivalence-Preserving Rewrite Rules

We now digress for a moment to present a family of rewrite rules for the calculus. These
preserve equivalence regardless of the underlying domain used to evaluate calculus queries.
Several of these rules will be used in the transformation of safe-range queries into the
algebra.

Calculus formulas ϕ,ψ over schema R are equivalent, denoted ϕ ≡ ψ , if for each I
over R, d ⊆ dom, and valuation ν with range ⊆ d

I |=d∪adom(ϕ,I) ϕ[ν] if and only if I |=d∪adom(ψ,I) ψ[ν].

(It is verified easily that this generalizes the notion of equivalence for conjunctive calculus
formulas.)

Figure 5.1 shows a number of equivalence-preserving rewrite rules for calculus for-
mulas. It is straightforward to verify that if ψ transforms to ψ ′ by a rewrite rule and if ϕ′
is the result of replacing an occurrence of subformula ψ of ϕ by formula ψ ′, then ϕ′ ≡ ϕ

(see Exercise 5.14).
Note that, assuming x �∈ free(ψ) and y �∈ free(ϕ),

∃xϕ ∧ ∀yψ ≡ ∃x∀y(ϕ ∧ ψ)≡ ∀y∃x(ϕ ∧ ψ).

Example 5.4.1 Recall from Chapter 2 that a formula ϕ is in prenex normal form (PNF)
if it has the form %1x1 . . .%nxnψ , where each %i is either ∀ or ∃, and no quantifiers occur
in ψ . In this case, ψ is called the matrix of formula ϕ.
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A formula ψ without quantifiers or connectives → or ↔ is in conjunctive normal
form (CNF) if it has the form ξ1 ∧ · · · ∧ ξm (m≥ 1), where each conjunct ξj has the form
L1∨ · · · ∨Lk (k ≥ 1) and where eachLl is a literal (i.e., atom or negated atom). Similarly, a
formula ψ without quantifiers or connectives→ or↔ is in disjunctive normal form (DNF)
if it has the form ξ1 ∨ · · · ∨ ξm, where each disjunct ξj has the form L1 ∧ · · · ∧ Lk where
each Ll is a literal (i.e., atom or negated atom).

It is easily verified (see Exercise 5.14) that the rewrite rules can be used to transform
an arbitrary calculus formula into an equivalent formula that is in PNF with a CNF matrix,
and into an equivalent formula that is in PNF with a DNF matrix.

Safe-Range Queries

The notion of safe range is presented now in three stages, involving (1) a normal form
called SRNF, (2) a mechanism for determining how variables are “range restricted” by
subformulas, and (3) specification of a required global property of the formula.

During this development, it is sometimes useful to speak of calculus formulas in terms
of their parse trees. For example, we will say that the formula (R(x) ∧ ∃y(S(y, z)) ∧
¬T (x, z)) has ‘and’ or ∧ as a root (which has an atom, an ∃, and a ¬ as children).

The normalization of formulas puts them into a form more easily analyzed for
safety without substantially changing their syntactic structure. The following equivalence-
preserving rewrite rules are used to place a formula into safe-range normal form (SRNF):

Variable substitution: This is from Section 4.2. It is applied until no distinct pair of quan-
tifiers binds the same variable and no variable occurs both free and bound.

Remove universal quantifiers: Replace subformula ∀$xψ by ¬∃$x¬ψ . (This and the next
condition can be relaxed; see Example 5.4.5.)

Remove implications: Replace ψ→ ξ by ¬ψ ∨ ξ , and similarly for↔.

Push negations: Replace

(i) ¬¬ψ by ψ

(ii) ¬(ψ1 ∨ · · · ∨ ψn) by (¬ψ1 ∧ · · · ∧ ¬ψn)

(iii) ¬(ψ1 ∧ · · · ∧ ψn) by (¬ψ1 ∨ · · · ∨ ¬ψn)

so that the child of each negation is either an atom or an existentially quantified
formula.

Flatten ‘and’s, ‘or’s, and existential quantifiers: This is done so that no child of an ‘and’
is an ‘and,’ and similarly for ‘or’ and existential quantifiers.

The SRNF formula resulting from applying these rules to ϕ is denoted SRNF(ϕ). A formula
ϕ (query {$e | ϕ}) is in SRNF if SRNF(ϕ)= ϕ.

Example 5.4.2 The first calculus query of Example 5.3.1 is in SRNF. The second calcu-
lus query is not in SRNF; the corresponding SRNF query is
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{xt | ∃xd, xaMovies(xt, xd, xa)∧
¬∃ya(∃ydMovies(xt, yd, ya)

∧ ¬∃ztMovies(zt , “Hitchcock”, ya))}.
Transforming the query of Example 5.3.2 into SRNF yields

{xt | ¬∃ya(∃ydMovies(xt, yd, ya)

∧ ¬∃ztMovies(zt , “Hitchcock”, ya))}.

We now present a syntactic condition on SRNF formulas that ensures that each variable
is “range restricted,” in the sense that its possible values all lie within the active domain of
the formula or the input. If a quantified variable is not range restricted, or if one of the
free variables is not range restricted, then the associated query is rejected. To make the
definition, we first define the set of range-restricted variables of an SRNF formula using
the following procedure, which returns either the symbol⊥, indicating that some quantified
variable is not range restricted, or the set of free variables that is range restricted.

Algorithm 5.4.3 (Range restriction (rr))

Input: a calculus formula ϕ in SRNF

Output: a subset of the free variables of ϕ or3 ⊥
begin

case ϕ of

R(e1, . . . , en) : rr(ϕ)= the set of variables in {e1, . . . , en};
x = a or a = x : rr(ϕ)= {x};

ϕ1 ∧ ϕ2 : rr(ϕ)= rr(ϕ1) ∪ rr(ϕ2);

ϕ1 ∧ x = y : rr(ϕ)=
{
rr(ψ) if {x, y} ∩ rr(ψ)= ∅,
rr(ψ) ∪ {x, y} otherwise;

ϕ1 ∨ ϕ2 : rr(ϕ)= rr(ϕ1) ∩ rr(ϕ2);
¬ϕ1 : rr(ϕ)= ∅;
∃$xϕ1 : if $x ⊆ rr(ϕ1)

then rr(ϕ)= rr(ϕ1)− $x
else return ⊥

end case
end

3 In the following, for eachZ,⊥∪Z =⊥∩Z =⊥−Z = Z−⊥=⊥. In addition, we show the case
of binary ‘and’s, etc., but we mean this to include polyadic ‘and’s, etc. Furthermore, we sometimes
use ‘$x’ to denote the set of variables occurring in $x.



5.4 Syntactic Restrictions for Domain Independence 85

Intuitively, the occurrence of a variable x in a base relation or in an atom of the
form x = a restricts that variable. This restriction is propagated through ∧, possibly lost
in ∨, and always lost in ¬. In addition, each quantified variable must be restricted by the
subformula it occurs in.

A calculus query {u | ϕ} is safe range if rr(SRNF(ϕ))= free(ϕ). The family of safe-
range queries is denoted by CALCsr .

Example 5.4.4 Recall Examples 5.3.1 and 5.4.2. The first query of Example 5.3.1 is safe
range. The first query of Example 5.4.2 is also safe range. However, the second query of
Example 5.4.2 is not because the free variable xt is not range restricted by the formula.

Before continuing, we explore a generalization of the notion of safe range to permit
universal quantification.

Example 5.4.5 Suppose that formula ϕ has a subformula of the form

ψ ≡ ∀$x(ψ1($x)→ ψ2($y)),

where $x and $y might overlap. Transforming into SRNF (and assuming that the parent of ψ
is not ¬), we obtain

ψ ′ ≡ ¬∃$x(ψ1($x) ∧ ¬ψ2($y)).

Now rr(ψ ′) is defined iff

(a) rr(ψ1)= $x, and

(b) rr(ψ2) is defined.

In this case, rr(ψ ′)= ∅. This is illustrated by the second query of Example 5.3.1, that was
transformed into SRNF in Example 5.4.2.

Thus SRNF can be extended to permit subformulas that have the form of ψ without
materially affecting the development.

The calculus query constructed in the proof of Lemma 5.3.11 is in fact safe range. It
thus follows that the algebra & CALCsr .

As shown in the following each safe range query is domain independent (Theo-
rem 5.4.6). For this reason, if q is safe range we generally use the natural interpretation
to evaluate it; we may also use the active domain interpretation.

The development here implies that all of CALCsr , CALCdi, and CALCadom are equiv-
alent. When the particular choice is irrelevant to the discussion, we use the term relational
calculus to refer to any of these three equivalent query languages.
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From Safe Range to the Algebra

We now present the main result of this section (namely, the translation of safe-range queries
into the named algebra). Speaking loosely, this translation is relatively direct in the sense
that the algebra query E constructed for calculus query q largely follows the structure of
q. As a result, evaluation of E will in most cases be more efficient than using the algebra
query that is constructed for q by the proof of Lemma 5.3.12.

Examples of the construction used are presented after the formal argument.

Theorem 5.4.6 CALCsr ≡ the relational algebra. Furthermore, each safe-range query
is domain independent.

The proof of this theorem involves several steps. As seen earlier, the algebra &
CALCsr . To prove the other direction, we develop a translation from safe-range queries
into the named algebra. Because the algebra is domain independent, this will also imply
the second sentence of the theorem.

To begin, let ϕ be a safe-range formula in SRNF. An occurrence of a subformula ψ in
ϕ is self-contained if its root is ∧ or if

(i) ψ = ψ1 ∨ · · · ∨ ψn and rr(ψ)= rr(ψ1)= · · · = rr(ψn)= free(ψ);

(ii) ψ = ∃$xψ1 and rr(ψ)= free(ψ1); or

(iii) ψ =¬ψ1 and rr(ψ)= free(ψ1).

A safe-range, SRNF formula ϕ is in4 relational algebra normal form (RANF) if each
subformula of ϕ is self-contained.

Intuitively, if ψ is a self-contained subformula of ϕ that does not have ∧ as a root, then
all free variables in ψ are range restricted within ψ . As we shall see, if ϕ is in RANF, this
permits construction of an equivalent relational algebra query Eϕ using an induction from
leaf to root.

We now develop an algorithm RANF-ALG that transforms safe-range SRNF formulas
into RANF. It is based on the following rewrite rules:

(R1) Push-into-or: Consider the subformula

ψ = ψ1 ∧ · · · ∧ ψn ∧ ξ,

where

ξ = ξ1 ∨ · · · ∨ ξm.

Suppose that rr(ψ)= free(ψ), but rr(ξ1 ∨ · · · ∨ ξm) �= free(ξ1 ∨ · · · ∨ ξm). Nondeter-
ministically choose a subset i1, . . . , ik of 1, . . . , n such that

ξ ′ = (ξ1 ∧ ψi1 ∧ · · · ∧ ψik) ∨ · · · ∨ (ξm ∧ ψi1 ∧ · · · ∧ ψik)

4 This is a variation of the notion of RANF used elsewhere in the literature; see Bibliographic Notes.
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satisfies rr(ξ ′) = free(ξ ′). (One choice of i1, . . . , ik is to use all of 1, . . . , n; this
necessarily yields a formula ξ ′ with this property.) Letting {j1, . . . , jl} = {1, . . . , n} −
{i1, . . . , ik}, set

ψ ′ = SRNF(ψj1 ∧ · · · ∧ ψjl ∧ ξ ′).

The application of SRNF to ξ ′ only has the effect of possibly renaming quantified
variables5 and of flattening the roots of subformulas ξp ∧ ψi1 ∧ · · · ∧ ψik, where ξp
has root ∧; analogous remarks apply. The rewrite rule is to replace subformula ψ by
ψ ′ and possibly apply SRNF to flatten an ∨, if both l = 0 and the parent of ψ is ∨.

(R2) Push-into-quantifier: Suppose that

ψ = ψ1 ∧ · · · ∧ ψn ∧ ∃$xξ,

where rr(ψ)= free(ψ), but rr(ξ) �= free(ξ). Then replace ψ by

ψ ′ = SRNF(ψj1 ∧ · · · ∧ ψjl ∧ ∃$xξ ′),

where

ξ ′ = ψi1 ∧ · · · ∧ ψik ∧ ξ

and where rr(ξ ′)= free(ξ ′) and {j1, . . . , jl} = {1, . . . , n} − {i1, . . . , ik}. The rewrite
rule is to replace ψ by ψ ′ and possibly apply SRNF to flatten an ∃.

(R3) Push-into-negated-quantifier: Suppose that

ψ = ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ,

where rr(ψ)= free(ψ), but rr(ξ) �= free(ξ). Then replace ψ by

ψ ′ = SRNF(ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ ′),

where

ξ ′ = ψi1 ∧ · · · ∧ ψik ∧ ξ

and where rr(ξ ′)= free(ξ ′) and {i1, . . . , ik} ⊆ {1, . . . , n}. That ψ ′ is equivalent to ψ

follows from the observation that the propositional formulas p ∧ q ∧ ¬r and p ∧ q ∧
¬(p ∧ r) are equivalent. The rewrite rule is to replace ψ by ψ ′.

The algorithm RANF-ALG for applying these rewrite rules is essentially top-down
and recursive. We sketch the algorithm now (see Exercise 5.19).

5 It is assumed that under SRNF renamed variables are chosen so that they do not occur in the full
formula under consideration.
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Algorithm 5.4.7 (Relational Algebra Normal Form (RANF-ALG))

Input: a safe-range calculus formula ϕ in SRNF

Output: a RANF formula ϕ′ = RANF(ϕ) equivalent to ϕ

begin
while some subformula ψ (with its conjuncts possibly reordered) of ϕ satisfies the
premise of R1, R2, or R3
do

case R1: (left as exercise)
R2: (left as exercise)
R3: Let ψ = ψ1 ∧ · · · ∧ ψn ∧ ¬∃$xξ

and ψi1, . . . , ψik satisfy the conditions of R3;
α := RANF(ψ1 ∧ · · · ∧ ψn);
β := RANF(SRNF(ψi1 ∧ · · · ∧ ψik ∧ ξ));
ψ ′ := α ∧ ¬∃$xβ;
ϕ := result of replacing ψ by ψ ′ in ϕ;

end case
end while

end

The proof that these rewrite rules can be used to transform a safe-range SRNF for-
mula into a RANF formula has two steps (see Exercise 5.19). First, a case analysis can
be used to show that if safe-range ϕ in SRNF is not in RANF, then one of the rewrite
rules (R1, R2, R3) can be applied. Second, it is shown that Algorithm 5.4.7 terminates.
This is accomplished by showing that (1) each successfully completed call to RANF-ALG
reduces the number of non-self-contained subformulas, and (2) if a call to RANF-ALG on
ψ invokes other calls to RANF-ALG, the input to these recursive calls has fewer non-self-
contained subformulas than does ψ .

We now turn to the transformation of RANF formulas into equivalent relational algebra
queries. We abuse notation somewhat and assume that each variable is also an attribute.
(Alternatively, a one-one mapping var-to-att : var→ att could be used.) In general, given
a RANF formula ϕ with free variables x1, . . . , xn, we shall construct a named algebra
expression Eϕ over attributes x1, . . . , xn such that for each input instance I, Eϕ(I) =
{x1, . . . , xn | ϕ}(I). (The special case of queries {e1, . . . , en | ϕ}, where some of the ei are
constants, is handled by performing a join with the constants at the end of the construction.)

A formula ϕ is in modified relational algebra normal form (modified RANF) if it is
RANF, except that each polyadic ‘and’ is ordered and transformed into binary ‘and’s,
so that atoms x = y (x �= y) are after conjuncts that restrict one (both) of the variables
involved and so that each free variable in a conjunct of the form ¬ξ occurs in some
preceding conjunct. It is straightforward to verify that each RANF formula can be placed
into modified RANF. Note that each subformula of a modified RANF formula is self-
contained.

Let RANF formula ϕ be fixed. The construction of Eϕ is inductive, from leaf to root,
and is sketched in the following algorithm. The special operator diff, on inputs R and S

where att(S)⊂ att(R), is defined by
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R diff S = R − (R '( S).

(Many details of this transformation, such as the construction of renaming function f ,
projection list $k, and selection formula F in the first entry of the case statement, are left to
the reader; see Example 5.4.9 and Exercise 5.19.)

Algorithm 5.4.8 (Translation into the Algebra)

Input: a formula ϕ in modified RANF

Output: an algebra query Eϕ equivalent to ϕ

begin
case ϕ of

R($e) δf (π$k(σF (R)))

x = a {〈x : a〉}

ψ ∧ ξ if ξ is x = x, then Eψ

if ξ is x = y (with x, y distinct), then
σx=y(Eψ), if {x, y} ⊆ free(ψ)
σx=y(Eψ '( δx→yEψ), if x ∈ free(ψ) and y �∈ free(ψ)
σx=y(Eψ '( δy→xEψ), if y ∈ free(ψ) and x �∈ free(ψ)

if ξ is x �= y, then σx �=y(Eψ)

if ξ =¬ξ ′, then
Eψ diff Eξ ′, if free(ξ ′)⊂ free(ψ)
Eψ − Eξ ′, if free(ξ ′)= free(ψ)

otherwise, Eψ '( Eξ

¬ψ {〈〉} − Eψ

(in the case that ¬ψ does not have ‘and’ as parent)

ψ1 ∨ · · · ∨ ψn Eψ1 ∪ · · · ∪ Eψn

∃x1, . . . , xnψ(x1, . . . , xn, y1, . . . , ym)

πy1,...,ym(Eψ)

end case
end

Finally, let q = {x1, . . . , xn | ϕ} be safe range. Because the transformations used for
SRNF and RANF are equivalence preserving, without loss of generality we can assume
that ϕ is in modified RANF. To conclude the proof of Theorem 5.4.6, it must be shown
that q and Eϕ are equivalent. In fact, it can be shown that for each instance I and each d
satisfying adom(q, I)⊆ d⊆ dom,

qd(I)= Eϕ(I).
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This will also yield that q is domain independent.
Let I and d be fixed. A straightforward induction can be used to show that for each

subformula ψ(y1, . . . , ym) of ϕ and each variable assignment ν with range d,

I |=d ψ[ν]⇔ 〈ν(y1), . . . , ν(ym)〉 ∈ Eψ(I)

(see Exercise 5.19.) This completes the proof of Theorem 5.4.6.

Example 5.4.9 (a) Consider the query

q1 = {〈a, x, y〉 : A1A2A3 | ∃z(P (x, y, z) ∨ [R(x, y)∧
([S(z) ∧ ¬T (x, z)] ∨ [T (y, z)])])}.

The formula of q1 is in SRNF. Transformation into RANF yields

∃z(P (x, y, z) ∨ [R(x, y) ∧ S(z) ∧ ¬T (x, z)] ∨ [R(x, y) ∧ T (y, z)]).

Assuming the schemas P [B1B2B3], R[C1C2], S[D], and T [F1F2], transformation of this
into the algebra yields

E = πx,y(δB1B2B3→xyz(P )

∪ ((δC1C2→xy(R) '( δD→z(S)) diff δF1F2→yz(T ))

∪ (δC1C2→xy(R) '( δF1F2→yz(T ))).

Finally, an algebra query equivalent to q1 is

{〈A1 : a〉} '( δxy→A2A3(E).

(b) Consider the query

q2 = {x | ∃y[R(x, y) ∧ ∀z(S(z, a)→ T (y, z))

∧ ∃v,w(¬T (v,w) ∧ w = b ∧ v = x)]}.

Transforming to SRNF, we have

∃y[R(x, y) ∧ ¬∃z(S(z, a) ∧ ¬T (y, z)) ∧ ∃v,w(¬T (v,w) ∧ w = b ∧ v = x)].

Transforming to RANF and reordering the conjunctions, we obtain

∃y[∃v,w(R(x, y)∧w = b∧v = x∧¬T (v,w))∧¬∃z(R(x, y)∧S(z, a)∧¬T (y, z))].

Assuming schemas R[A1, A2], S[B1, B2], and T [C1, C2], the equivalent algebra query is
obtained using the program
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E1 := (δA1A2→xy(R) '( {〈w : b〉});
E2 := (σv=x(E1 '( δx→v(E1))) diff δC1C2→vw(T );
E3 := πx,y(E2);
E4 := πx,y(δA1A2→xy(R) '( δB1→z(πB1(σB2=a(S))) diff δC1C2→yz(T ));
E5 := πx(E3 − E4).

The Positive Existential Calculus

In Chapter 4, disjunction was incorporated into the rule-based conjunctive queries, and
union was incorporated into the tableau, SPC, and SPJR queries. Incorporating disjunction
into the conjunctive calculus was more troublesome because of the possibility of infi-
nite “answers.” We now apply the tools developed earlier in this chapter to remedy this
situation.

A positive existential (calculus) query is a domain-independent calculus query q =
{e1, . . . , en | ϕ}, possibly with equality, in which the only logical connectives are ∧, ∨,
and ∃. It is decidable whether a query q with these logical connectives is domain inde-
pendent; and if so, q is equivalent to a safe-range query using only these connectives (see
Exercise 5.16). The following is easily verified.

Theorem 5.4.10 The positive existential calculus is equivalent to the family of conjunc-
tive queries with union.

5.5 Aggregate Functions

In practical query languages, the underlying domain is many-sorted, with sorts such as
boolean, string, integer, or real. These languages allow the use of comparators such as ≤
between database entries in an ordered sort and “aggregate” functions such as sum, count,
or average on numeric sorts. In this section, aggregate operators are briefly considered.
In the next section, a novel approach for incorporating arithmetic constraints into the
relational model will be addressed.

Aggregate operators operate on collections of domain elements. The next example
illustrates how these are used.

Example 5.5.1 Consider a relation Sales[Theater, Title, Date, Attendance], where a
tuple 〈th, ti, d, a〉 indicates that on date d a total of a people attended showings of movie
ti at theater th. We assume that {Theater, Title, Date} is a key, i.e., that two distinct tuples
cannot share the same values on these three attributes. Two queries involving aggregate
functions are

(5.4) For each theater, list the total number of movies that have been shown there.

(5.5) For each theater and movie, list the total attendance.
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Informally, the first query might be expressed in a pidgin language as

{〈th,c〉 | th is a theater occurring in Sales

and c = |πTitle(σTheater=th(Sales))|}
and the second as

{〈th, ti, s〉 | 〈th, ti〉 is a theater-title pair appearing in Sales

and s is the sum that includes each occurrence of each a-value in
σTheater=th∧Title=t i(Sales)}

A subtlety here is that this second query cannot be expressed simply as

{〈th, ti, s〉 | 〈th, ti〉 is a theater-title pair appearing in Sales

and s =#{a ∈ πAttendance(σTheater=th∧Title=ti(Sales))}}
since a value a has to be counted as many times as it occurs in the selection. This sug-
gests that a more natural setting for studying aggregate functions would explicitly include
bags (or multisets, i.e., collections in which duplicates are permitted) and not just sets, a
somewhat radical departure from the model we have used so far.

The two queries can be expressed as follows using aggregate functions in an algebraic
language:

πTheater; count(Title)(Sales)

πTheater,Title; sum(Attendance)(Sales).

We now briefly present a more formal development. To simplify, the formalism is
based on the unnamed perspective, and we assume that dom = N, i.e., the set of non-
negative integers. We stay within the relational model although as noted in the preceding
example, a richer data model with bags would be more natural. Indeed, the complex value
model that will be studied in Chapter 20 provides a more appropriate context for consider-
ing aggregate functions.

We shall adopt a somewhat abstract view of aggregate operators. An aggregate func-
tion f is defined to be a family of functions f1, f2, . . . such that for each j ≥ 1 and each
relation schema S with arity(S)≥ j , fj : Inst(S)→ N. For instance, for the sum aggregate
function, we will have sum1 to sum the first column and, in general, sumi to sum the ith

one. As in the case of sum, we want the fi to depend only on the content of the column
to which they are applied, where the “content” includes not only the set of elements in the
column, but also the number of their occurrences (so, columns are viewed as bags). This
requirement is captured by the following uniformity property imposed on each aggregate
function f :

Suppose that the ith column of I and the j th of J are identical, i.e., for each a,
there are as many occurrences of a in the ith column of I and in the j th column of
J . Then fi(I )= fj(J ).
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All of the commonly arising aggregate functions satisfy this uniformity property. The
uniformity condition is also used when translating calculus queries with aggregates into
the algebra with aggregates.

We next illustrate how aggregate functions can be incorporated into the algebra and
calculus (we do not discuss how this is done for nr-datalog¬, since it is similar to the alge-
bra.) Aggregate functions are added to the algebra using an extended projection operation.
Specifically, the projection function for aggregate function f on relation instance I is de-
fined as follows:

πj1,...,jm;f (k)(I )= {〈aj1, . . . , ajm, fk(σj1=aj1∧···∧jm=ajm(I ))〉 | 〈a1, . . . , an〉 ∈ I }.

Note that the aggregate function fk is applied separately to each group of tuples in I

corresponding to a different possible value for the columns j1, . . . , jm.
Turning to the calculus, we begin with an example. Query (5.5) can be expressed in

the extended calculus as

{th, ti, s | ∃d1, a1(Sales(th, ti, d1, a1)

∧ s = sum2{d2, a2 | Sales(th, ti, d2, a2)})}
where sum2 is the aggregate function summing the second column of a relation. Note that
the subexpression {d2, a2 | Sales(th, ti, d2, a2)} has free variables th and ti that do not occur
in the target of the subexpression. Intuitively, different assignments for these variables will
yield different values for the subexpression.

More formally, aggregate functions are incorporated into the calculus by permitting
aggregate terms that have the form fj{$x | ψ}, where f is an aggregate function, j ≤
arity($x) and ψ is a calculus formula (possibly with aggregate terms). When defining the
extended calculus, care must be taken to guarantee that aggregate terms do not recursively
depend on each other. This can be accomplished with a suitable generalization of safe
range. This generalization will also ensure that free variables occurring in an aggregate
term are range restricted by a subformula containing it. It is straightforward to define
the semantics of the generalized safe-range calculus with aggregate functions. One can
then show that the extensions of the algebra and safe-range calculus with the same set of
aggregate functions have the same expressive power.

5.6 Digression: Finite Representations of Infinite Databases

Until now we have considered only finite instances of relational databases. As we have
seen, this introduced significant difficulty in connection with domain independence of
calculus queries. It is also restrictive in connection with some application areas that involve
temporal or geometric data. For example, it would be convenient to think of a rectangle in
the real plane as an infinite set of points, even if it can be represented easily in some finite
manner.

In this short section we briefly describe some recent and advanced material that uses
logic to permit the finite representation of infinite databases. We begin by presenting an
alternative approach to resolving the problem of safety, that permits queries to have answers
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that are infinite but finitely representable. We then introduce a promising generalization of
the relational model that uses constraints to represent infinite databases, and we describe
how query processing can be performed against these in an efficient manner.

An Alternative Resolution to the Problem of Safety

As indicated earlier, much of the research on safety has been directed at syntactic restric-
tions to ensure domain independence. An alternative approach is to use the natural inter-
pretation, even if the resulting answer is infinite. As it turns out, the answers to such queries
are recursive and have a finite representation.

For this result, we shall use a finite set d ⊂ dom, which corresponds intuitively to the
active domain of a query and input database; and a setC = {c1, . . . , cm} ofm distinct “new”
symbols, which will serve as placeholders for elements of dom − d. Speaking intuitively,
the elements of C sometimes act as elements of dom, and so it is not appropriate to view
them as simple variables.

A tuple with placeholders is a tuple t = 〈t1, . . . , tn〉, where each ti is in d ∪ C. The
semantics of such t relative to d are

semd(t)= {ρ(t) | ρ is a one-one mapping from d ∪ C

that leaves d fixed and maps C into dom− d}.
The following theorem, stated without proof, characterizes the result of applying an

arbitrary calculus query using the natural semantics.

Theorem 5.6.1 Let q = {e1, . . . , en | ϕ} be an arbitrary calculus query, such that each
quantifier in ϕ quantifies a distinct variable that is not free in ϕ. Let C = {c1, . . . , cm} be
a set of m distinct “new” symbols not occurring in dom, but viewed as domain elements,
where m is the number of distinct variables in ϕ. Then for each input instance I,

qdom(I)= ∪{semadom(q,I)(t) | t ∈ qadom(q,I)∪C(I)}.

This shows that if we apply a calculus query (under the natural semantics) to a finite
database, then the result is recursive, even if infinite. But is the set of infinite databases
described in this manner closed under the application of calculus queries? The affirmative
answer is provided by an elegant generalization of the relational model presented next (see
Exercise 5.31).

Constraint Query Languages

The following generalization of the relational model seems useful to a variety of new
applications. The starting point is to consider infinite databases with finite representations
based on the use of constraints. To begin we define a generalized n-tuple as a conjunction
of constraints over n variables. The constraints typically include =, �=, ≤, etc. In some
sense, such a constraint can be viewed as a finite representation of a (possibly infinite) set
of (normal) n-tuples (i.e., the valuations of the variables that satisfy the constraint).
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Example 5.6.2 Consider the representation of rectangles in the plane. Suppose first that
rectangles are given using 5-tuples (n, x1, y1, x2, y2), where n is the name of the rectangle,
(x1, y1) are the coordinates of the lower left corner, and (x2, y2) are the coordinates of the
upper right. The set of points 〈u, v〉 in such a rectangle delimited by x1, y1, x2, y2 is given
by the constraint

x1 ≤ u≤ x2 ∧ y1 ≤ v ≤ y2.

Now the names of intersecting rectangles from a relation R are given by

{〈n1, n2〉 | ∃ x1, y1, x2, y2, x
′
1, y

′
1, x

′
2, y

′
2, u, v

(R(n1, x1, y1, x2, y2) ∧ (x1 ≤ u≤ x2 ∧ y1 ≤ v ≤ y2)∧
R(n2, x

′
1, y

′
1, x

′
2, y

′
2) ∧ (x′1 ≤ u≤ x′2 ∧ y′1 ≤ v ≤ y′2))}.

This is essentially within the framework of the relational model presented so far, except
that we are using an infinite base relation ≤. There is a level of indirection between the
representation of a rectangle (a, x1, y1, x2, y2) and the actual set of points that it contains.

In the following constraint formalism, a named rectangle can be represented by a
“generalized tuple” (i.e., a constraint). For instance, the rectangle of name a with corners
(0.5, 1.0) and (1.5, 5.5) is represented by the constraint

z1 = a ∧ 0.5≤ z2 ∧ z2 ≤ 1.5 ∧ 1.0 ≤ z3 ∧ z3 ≤ 5.5.

This should be viewed as a finite syntactic representation of an infinite set of triples. A
triple 〈z1, z2, z3〉 satisfying this constraint indicates that the point of coordinates (z2, z3) is
in a rectangle with name z1.

One can see a number of uses in allowing constraints in the language. First, con-
straints arise naturally for domains concerning measures (price, distance, time, etc.). The
introduction of time has already been studied in the active area of temporal databases (see
Section 22.6). In other applications such as spatial databases, geometry plays an essential
role and fits nicely in the realm of constraint query languages.

One can clearly obtain different languages by considering various domains and vari-
ous forms of constraints. Relational calculus, relational algebra, or some other relational
languages can be extended with, for instance, the theory of real closed fields or the the-
ory of dense orders without endpoints. Of course, a requirement is the decidability of the
resulting language.

Assuming some notion of constraints (to be formalized soon), we now define some-
what more precisely the constraint languages and then illustrate them with two examples.

Definition 5.6.3 A generalized n-tuple is a finite conjunction of constraints over vari-
ables x1, . . . , xn. A generalized instance of arity n is a finite set of generalized n-tuples
(the corresponding formula is the disjunction of the constraints).
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Suppose that I is a generalized instance. We refer to I as a syntactic database and to
the set of conventional tuples represented by I as the semantic database.

We now present two applications of this approach, one in connection with the reals
and the other with the rationals.

We assume now that the constants are interpreted over a real closed field (e.g., the
reals). The constraints are polynomial inequality constraints [i.e., inequalities of the form
p(x1, . . . , xn)≥ 0, where p is a polynomial]. Two 3-tuples in this context are

(3.56× x2
1 + 4.0× x2 ≥ 0) ∧ (x3 − x1 ≥ 0)

(x1 + x2 + x3 ≥ 0).

One can evaluate queries algebraically bottom-up (i.e., at each step of the computation,
the result is still a generalized instance). This is a straightforward consequence of Tarski’s
decision procedure for the theory of real closed fields. A difficulty resides in projection
(i.e., quantifier elimination). The procedure for projection is extremely costly in the size of
the query. However, for a fixed query, the complexity in the size of the syntactic database
is reasonable (in nc).

We assume now that the constants are interpreted over a countably infinite set with a
binary relation ≤ that is a dense order (e.g., the rationals). The constraints are of the form
xθy or xθc, where x, y are variables, c is a constant, and θ is among ≤, <,=. An example
of a 3-tuple is

(x1 ≤ x2) ∧ (x2 < x3).

Here again, a bottom-up algebraic evaluation is feasible. Indeed, evaluation is in ac0

in the size of the syntactic database (for a fixed query).
In the remainder of this book, we consider standard databases and not generalized

ones.
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Exercises

Exercise 5.1 Express queries (5.2 and 5.3) in (1) the relational algebras, (2) nonrecursive
datalog¬, and (3) domain-independent relational calculus.

Exercise 5.2 Express the following queries against the CINEMA database in (1) the relational
algebras, (2) nonrecursive datalog¬, and (3) domain-independent relational calculus.

(a) Find the actors cast in at least one movie by Kurosawa.

(b) Find the actors cast in every movie by Kurosawa.

(c) Find the actors cast only in movies by Kurosawa.

(d) Find all pairs of actors who act together in at least one movie.

(e) Find all pairs of actors cast in exactly the same movies.

(f) Find the directors such that every actor is cast in one of his or her films.

(Assume that each film has exactly one director.)

Exercise 5.3 Prove or disprove (assuming X ⊆ sort(P )= sort(Q)):

(a) πX(P ∪Q)= πX(P ) ∪ πX(Q);

(b) πX(P ∩Q)= πX(P ) ∩ πX(Q).

Exercise 5.4

(a) Give formal definitions for the syntax and semantics of the unnamed and named
relational algebras.

(b) Show that in the unnamed algebra ∩ can be simulated using (1) the difference oper-
ator −; (2) the operators ×, π, σ .

(c) Give a formal definition for the syntax and semantics of selection operators in the un-
named algebra that permit conjunction, disjunction, and negation in their formulas.
Show that these selection operators can be simulated using atomic selection opera-
tors, union, intersect, and difference.

J (d) Show that the SPCU algebra, in which selection operators with negation in the
formulas are permitted, cannot simulate the difference operator.

J (e) Formulate and prove results analogous to those of parts (b), (c), and (d) for the named
algebra.

Exercise 5.5

(a) Prove that the unnamed algebra operators {σ, π,×,∪,−} are nonredundant.

(b) State and prove the analogous result for the named algebra.

Exercise 5.6

(a) Exhibit a relational algebra query that is not monotonic.

(b) Exhibit a relational algebra query that is not satisfiable.
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Exercise 5.7 Prove Proposition 5.1.2 (i.e., that the unnamed and named relational algebras
have equivalent expressive power).

Exercise 5.8 (Division) The division operator, denoted ÷, is added to the named algebra as
follows. For instances I and J with sort(J )⊆ sort(I ), the value of I ÷ J is the set of tuples
r ∈ πsort(I )−sort(J )(I ) such that ({r} '( J ) ⊆ I . Use the division to express algebraically the
query, “Which theater is featuring all of Hitchcock’s movies?”. Describe how nr-datalog¬ can
be used to simulate division. Describe how the named algebra can simulate division. Is division
a monotonic operation?

Exercise 5.9 Show that the semantics of each nr-datalog¬ rule can be described as a difference
q1 − q2, where q1 is an SPJR query and q2 is an SPJRU query.

Exercise 5.10 Verify that each nr-datalog¬ program with equality can be simulated by one
without equality.

Exercise 5.11 Prove Proposition 5.2.2. Hint: Use the proof of Theorem 4.4.8 and the fact that
the relational algebra is closed under composition.

JExercise 5.12 Prove that the domain-independent relational calculus without equality is
strictly weaker than the domain-independent relational calculus. Hint: Suppose that calculus
query q without equality is equivalent to {x | R(x) ∧ x �= a}. Show that q can be translated into
an algebra query q ′ that is constructed without using a constant base relation and such that all
selections are on base relation expressions. Argue that on each input relation I over R, each
subexpression of q ′ evaluates to either In for some n ≥ 0, or to the empty relation for some
n≥ 0.

Exercise 5.13

(a) Complete the proof of Lemma 5.3.11.

(b) Complete the proof of Lemma 5.3.12.

Exercise 5.14

(a) Prove that the rewrite rules of Figure 5.1 preserve equivalence.

(b) Prove that these rewrite rules can be used to transform an arbitrary calculus formula
into an equivalent formula in PNF with CNF matrix. State which rewrite rules are
needed.

(c) Do the same as (b), but for DNF matrix.

(d) Prove that the rewrite rules of Figure 5.1 are not complete in the sense that there
are calculus formulas ϕ and ψ such that (1) ϕ ≡ ψ , but (2) there is no sequence of
applications of the rewrite rules that transforms ϕ into ψ .

Exercise 5.15 Verify the claims of Example 5.3.9.

Exercise 5.16

(a) Show that each positive existential query is equivalent to one whose formula is in
PNF with either CNF or DNF matrix and that they can be expressed in the form
{e1, . . . , en | ψ1 ∨ · · · ∨ ψm}, where each ψj is a conjunctive calculus formula with
free(ψj) = the set of variables occurring in e1, . . . , en. Note that this formula is safe
range.
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(b) Show that it is decidable, given a relational calculus query q (possibly with equality)
whose only logical connectives are ∧, ∨, and ∃, whether q is domain independent.

(c) Prove Theorem 5.4.10.

Exercise 5.17 Use the construction of the proof of Theorem 5.4.6 to transform the following
into the algebra.

(a) {〈 〉 | ∃x(R(x) ∧ ∃y(S(x, y) ∧ ¬∃z(T (x, y, a))))}
(b) {w, x, y, z | (R(w, x, y) ∨ R(w, x, z)) ∧ (R(y, z,w) ∨ R(y, z, x))}

Exercise 5.18 For each of the following queries, indicate whether it is domain independent
and/or safe range. If it is not domain independent, give examples of different domains yielding
different answers on the same input; and if it is safe range, translate it into the algebra.

(a) {x, y | ∃z[T (x, z) ∧ ∃wT (w, x, y)] ∧ x = y}
(b) {x, y | [x = a ∨ ∃z(R(y, z))] ∧ S(y)}
(c) {x, y | [x = a ∨ ∃z(R(y, z))] ∧ S(y) ∧ T (x)}
(d) {x | ∀y(R(y)→ S(x, y))}
(e) {〈〉 | ∃x∀y(R(y)→ S(x, y))}
(f) {x, y | ∃zT (x, y, z) ∧ ∃u, v([(R(u) ∨ S(u, v)) ∧ R(v)]
→ [∃w(T (x,w, v) ∧ T (u, v, y))])}

JExercise 5.19 Consider the proof of Theorem 5.4.6.

(a) Give the missing parts of Algorithm 5.4.7.

(b) Show that Algorithm 5.4.7 is correct and terminates on all input.

(c) Give the missing parts of Algorithm 5.4.8 and verify its correctness.

(d) Given q = {〈x1, . . . , xn〉 | ϕ} with ϕ in modified RANF, show for each instance I and
each d satisfying adom(q, I)⊆ d⊆ dom that qd(I)= Eϕ(I).

Exercise 5.20 Consider the proof of Theorem 5.4.6.

(a) Present examples illustrating how the nondeterministic choices in these rewrite rules
can be used to help optimize the algebra query finally produced by the construction of
the proof of this lemma. (Refer to Chapter 6 for a general discussion of optimization.)

(b) Consider a generalization of rules (R1) and (R2) that permits using a set of indexes
{j1, . . . , jl} ⊆ {1, . . . , n} − {i1, . . . , ik}. What are the advantages of this generaliza-
tion? What restrictions must be imposed to ensure that Algorithm 5.4.8 remains
correct?

Exercise 5.21 Develop a direct proof that CALCadom & CALCsr . Hint: Given calculus query
q, first build a formula ξadom(x) such that I |= ξadom(x)[ν] iff ν(x) ∈ adom(q, I). Now perform
an induction on subformulas.

JExercise 5.22 [Coh86] Let R have arity n. Define the gen(erator) operator so that for instance
I of R, indexes 1≤ i1 < · · ·< ik ≤ n, and constants a1, . . . , ak,

geni1:a1,...,ik:ak(I )= πj1,...,jl(σi1=a1∧···∧ik=ak(I )),

where {j1, . . . , jl} is a listing in order of (some or all) indexes in {1, . . . , n} − {i1, . . . , ik}. Note
that the special case of gen1:b1,...,n:bn(I ) can be viewed as a test of 〈b1, . . . , bn〉 ∈ I ; and gen[ ](I )
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is a test of whether I is nonempty. In some research in AI, the primitive mechanism for accessing
relations is based on generators that are viewed as producing a stream of tuples as output. For
example, the query {〈x, y, z〉 | R(x, y) ∧ S(y, z)} can be computed using the algorithm

for each tuple 〈x, y〉 generated by gen1:x,2:y(R)

for each value 〈z〉 generated by gen1:y(S)

output 〈x, y, z〉
end for each

end for each

Develop an algorithm for translating calculus queries into programs using generators.
Describe syntactic restrictions on the calculus that ensure that your algorithm succeeds.

♠Exercise 5.23 [Cod72b] (Tuple calculus.) We use a set tvar of sorted tuple variables. The
tuple calculus is defined as follows. If t is a tuple variable and A is an attribute in the sort of t ,
t.A is a term. A constant is also a term. The atomic formulas are either of the form R(t) with
the appropriate constraint on sorts, or e = e′, where e, e′ are terms. Formulas are constructed as
in the standard relational calculus. For example, query (5.1) is expressed by the tuple calculus
query

{t : title | ∃s: title, director, actor[Movie(s) ∧ t.title= s.title

∧ s.director = “Hitchcock”]

∧ ¬∃u: title, director, actor[Movie(u) ∧ u.title= s.title

∧ u.actor = “Hitchcock”]}.
Give a formal definition for the syntax of the tuple calculus and for the relativized interpretation,
active domain, and domain-independent semantics. Develop an analog of safe range. Prove the
equivalence of conventional calculus and tuple calculus under all of these semantics.

Exercise 5.24 Prove that the relational calculus and the family of nr-datalog¬ programs with
single-relation output have equivalent expressive power by using direct simulations between the
two families.

♠Exercise 5.25 [Top87] Let R be a database schema, and define the binary relation gen(erates)
on variables and formulas as follows:

gen(x, ϕ) if ϕ = R(u) for some R ∈ R and x ∈ free(ϕ)
gen(x,¬ϕ) if gen(x, pushnot(¬ϕ))
gen(x, ∃yϕ) if x, y are distinct and gen(x, ϕ)
gen(x,∀yϕ) if x, y are distinct and gen(x, ϕ)
gen(x, ϕ ∨ ψ) if gen(x, ϕ) and gen(x, ψ)

gen(x, ϕ ∧ ψ) if gen(x, ϕ) or gen(x, ψ),

where pushnot(¬ϕ) is defined in the natural manner to be the result of pushing the negation
into the next highest level logical connective (with consecutive negations cancelling each other)
unless ϕ is an atom (using the rewrite rules 5, 6, 7, 10, and 11 from Fig. 5.1). A formula ϕ is
allowed

(i) if x ∈ free(ϕ) then gen(x, ϕ);

(ii) if for each subformula ∃yψ of ϕ, gen(y, ψ) holds; and
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(iii) if for each subformula ∀yψ of ϕ, gen(y,¬ψ) holds.

A calculus query is allowed if its formula is allowed.

(a) Exhibit a query that is allowed but not safe range.

� (b) Prove that each allowed query is domain independent.

In [VanGT91, EHJ93] a translation of allowed formulas into the algebra is presented.)

�Exercise 5.26 [Nic82] The notion of “range-restricted” queries, which ensures domain inde-
pendence, is based on properties of the normal form equivalents of queries. Let q = {�x | ϕ} be
a calculus query, and let ϕDNF = �%y(D1 ∨ · · · ∨Dn) be the result of transforming ϕ into PNF
with DNF matrix using the rewrite rules of Fig. 5.1; and similarly let ϕCNF = �%z(C1∧ · · · ∧Cm)

be the result of transforming ϕ into PNF with CNF matrix. The query q is range restricted if

(i) each free variable x in ϕ occurs in a positive literal (other than x = y) in every Di;

(ii) each existentially quantified variable x in ϕDNF occurs in a positive literal (other than
x = y) in every Di where x occurs; and

(iii) each universally quantified variable x in ϕCNF occurs in a negative literal (other than
x �= y) in every Cj where x occurs.

Prove that range-restricted queries are domain independent. (In [VanGT91] a translation of the
range-restricted queries into the algebra is presented.)

Exercise 5.27 [VanGT91] Suppose that R[Product, Part] holds project numbers and the parts
that are used to make them, and S[Supplier, Part] holds supplier names and the parts that they
supply. Consider the queries

q1 = {x | ∀y(R(100, y)→ S(x, y))}
q2 = {〈〉 | ∃x∀y(R(100, y)→ S(x, y))}

(a) Prove that q1 is not domain independent.

(b) Prove that q2 is not allowed (Exercise 5.25) but it is range restricted (Exercise 5.26)
and hence domain independent.

(c) Find an algebra query q ′ equivalent to q2.

Exercise 5.28 [Klu82] Consider a database schema with relations Dept[Name, Head, Col-
lege], Faculty[Name, Dname], and Grad[Name, MajorProf , GrantAmt], and the query

For each department in the Letters and Science College, compute the total graduate
student support for each of the department’s faculty members, and produce as output a
relation that includes all pairs 〈d, a〉where d is a department in the Letters and Science
College, and a is the average graduate student support per faculty member in d.

Write algebra and calculus queries that express this query.

Exercise 5.29 We consider constraint databases involving polynomial inequalities over the re-
als. Let I1 = {(9x2

1 + 4x2 ≥ 0)} be a generalized instance over AB, where x1 ranges over A and
x2 ranges over B, and let I2 = {(x3− x1 ≥ 0)} over AC. Express πBC(I1 �� I2) as a generalized
instance.

�Exercise 5.30 Recall Theorem 5.6.1.
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(a) Let finite d ⊂ dom be fixed, C be a set of new symbols, and t be a tuple with
placeholders. Describe a generalized tuple (in the sense of constraint databases) t ′
whose semantics are equal to semd(t).

(b) Show that the family of databases representable by sets of tuples with placeholders
is closed under the relational calculus.

♠Exercise 5.31 Prove Theorem 5.6.1.

Exercise 5.32 [Mai80] (Unrestricted algebra) For this exercise we permit relations to be finite
or infinite. Consider the complement operator c defined on instances I of arity n by I c =
domn − I . (The analogous operator is defined for the named algebra.) Prove that the calculus
under the natural interpretation is equivalent to the algebra with operators {σ, π,×,∪,c }.

�Exercise 5.33 A total mapping τ from instances over R to instances over S is C-generic for
C ⊆ dom, iff for each bijection ρ over dom that is the identity on C, τ and ρ commute. That
is, τ(ρ(I))= ρ(τ(I)) for each instance I of R. The mapping τ is generic if it is C-generic for
some finite C ⊆ dom. Prove that each relational algebra query is generic—in particular, that
each algebra query q is adom(q)-generic.

♠Exercise 5.34 Let R be a unary relation name. A hyperplane query over R is a query of the
form σF(R × · · · × R) (with 0 or more occurrences of R), where F is a conjunction of atoms
of the form i = j , i �= j , i = a, or i �= a (for indexes i, j and constant a). A formula F of this
form is called a hyperplane formula. A hyperplane-union query over R is a query of the form
σF(R × · · · × R), where F is a disjunction of hyperplane formulas; a formula of this form is
called a hyperplane-union formula.

(a) Show that if q is an algebra query over R, then there is an n ≥ 0 and a hyperplane-
union query q ′ such that for all instances I over R, if |I | ≥ n and adom(I ) ∩
adom(q)= ∅, then q(I )= q ′(I ).

The query even is defined over R as follows: even(I ) = {〈〉} (i.e., yes) if |I | is even; and
even(I )= {} (i.e., no) otherwise.

(b) Prove that there is no algebra query q over R such that q ≡ even.

Exercise 5.35 [CH80b] (Unsorted algebra) An h-relation (for heterogeneous relation) is a
finite set of tuples not necessarily of the same arity.

(a) Design an algebra for h-relations that is at least as expressive as relational algebra.

� (b) Show that the algebra in (a) can be chosen to have the additional property that if
q is a query in this algebra taking standard relational input and producing standard
relational output, then there is a standard algebra query q ′ such that q ′ ≡ q.

♠Exercise 5.36 [IL84] (Cylindric algebra) Let n be a positive integer, R[A1, . . . , An] a relation
schema, and C a (possibly infinite) set of constants. Recall that a Boolean algebra is a 6-tuple
(B,∨,∧, ,⊥, ), where B is a set containing ⊥ and  ; ∨,∧ are binary operations on B; and

is a unary operation on B such that for all x, y, z ∈ B:

(a) x ∨ y = y ∨ x;

(b) x ∧ y = y ∧ x;

(c) x ∨ (y ∧ z)= (x ∨ y) ∧ (x ∨ z);

(d) x ∧ (y ∨ z)= (x ∧ y) ∨ (x ∧ z);
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(e) x ∧ ⊥=⊥;

(f) x ∨  = ;

(g) x ∧ x =⊥;

(h) x ∨ x = ; and

(i) ⊥ �=  .

For a Boolean algebra, define x ≤ y to mean x ∧ y = x.

(a) Show that 〈RC,∪,∩,c ,∅, Cn〉 is a Boolean algebra where RC is the set of all (pos-
sibly infinite) R-relations over constants in C and c denotes the unary complement
operator, defined so that I c = Cn − I . In addition, show that I ≤ J iff I ⊆ J .

Let the diagonals dij be defined by the statement, “for each i, j , dij = σAi=Aj
(Cn)”; and let the

ith cylinder Ci be defined for each I by the statement, “CiI is the relation overRC defined by

CiI = {t | πA1...Ai−1Ai+1...An(t) ∈ πA1...Ai−1Ai+1...An(I ) and t (Ai) ∈ C}.”

(b) Show the following properties of cylindric algebras: (1) Ci∅ = ∅; (2) x ≤ Cix; (3)
Ci(x ∩ Ciy)= Cix ∩ Ciy; (4) CiCjx = CjCix; (5) dii = Cn; (6) if i �= j and i �= k,
then djk = Ci(dji ∩ dik); (7) if i �= j , then Ci(dij ∩ x) ∩ Ci(dij ∩ x)= ∅.

(c) Let h be the mapping from any (possibly infinite) relation S with sort(S)⊂ A1 . . . An

with entries in C to a relation over R obtained by extending each tuple in S to
A1 . . . An in all possible ways with values in C. Prove that (1) h(R1 �� R2)= h(R1)∩
h(R2) and (2) if A1 ∈ sort(R), then h(πA1(R))= C1h(R1).



6 Static Analysis and
Optimization

Alice: Do you guys mean real optimization?
Riccardo: Well, most of the time it’s local maneuvering.

Vittorio: But sometimes we go beyond incremental reform . . .
Sergio: . . . with provably global results.

This chapter examines the conjunctive and first-order queries from the perspective of
static analysis (in the sense of programming languages). It is shown that many prop-

erties of conjunctive queries (e.g., equivalence, containment) are decidable although they
are not decidable for first-order queries. Static analysis techniques are also applied here in
connection with query optimization (i.e., transforming queries expressed in a high-level,
largely declarative language into equivalent queries or machine instruction programs that
are arguably more efficient than a naive execution of the initial query).

To provide background, this chapter begins with a survey of practical optimization
techniques for the conjunctive queries. The majority of practically oriented research and
development on query optimization has been focused on variants of the conjunctive queries,
possibly extended with arithmetic operators and comparators. Because of the myriad fac-
tors that play a role in query evaluation, most practically successful techniques rely heavily
on heuristics.

Next the chapter presents the elegant and important Homomorphism Theorem, which
characterizes containment and equivalence between conjunctive queries. This leads to
the notion of tableau “minimization”: For each tableau query there is a unique (up to
isomorphism) equivalent tableau query with the smallest number of rows. This provides a
theoretical notion of true optimality for conjunctive queries. It is also shown that deciding
these properties and minimizing conjunctive queries is np-complete in the size of the input
queries.

Undecidability results are then presented for the first-order queries. Although related
to undecidability results for conventional first-order logic, the proof techniques used here
are necessarily different because all instances considered are finite by definition. The
undecidability results imply that there is no hope of developing an algorithm that performs
optimization of first-order queries that is complete. Only limited optimization of first-order
queries involving difference is provided in most systems.

The chapter closes by returning to a specialized subset of the conjunctive queries based
on acyclic joins. These have been shown to enjoy several interesting properties, some
yielding insight into more efficient query processing.

Chapter 13 in Part D examines techniques for optimizing datalog queries.

105
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6.1 Issues in Practical Query Optimization

Query optimization is one of the central topics of database systems. A myriad of factors
play a role in this area, including storage and indexing techniques, page sizes and paging
protocols, the underlying operating system, statistical properties of the stored data, statis-
tical properties of anticipated queries and updates, implementations of specific operators,
and the expressive power of the query languages used, to name a few. Query optimization
can be performed at all levels of the three-level database architecture. At the physical level,
this work focuses on, for example, access techniques, statistical properties of stored data,
and buffer management. At a more logical level, algebraic equivalences are used to rewrite
queries into forms that can be implemented more efficiently.

We begin now with a discussion of rudimentary considerations that affect query pro-
cessing (including the usual cost measurements) and basic methods for accessing relations
and implementing algebraic operators. Next an optimization approach based on algebraic
equivalences is described; this is used to replace a given algebraic expression by an equiva-
lent one that can typically be computed more quickly. This leads to the important notion of
query evaluation plans and how they are used in modern systems to represent and choose
among many alternative implementations of a query. We then examine intricate techniques
for implementing multiway joins based on different orderings of binary joins and on join
decomposition.

The discussion presented in this section only scratches the surface of the rich body of
systems-oriented research and development on query optimizers, indicating only a handful
of the most important factors that are involved. Nothing will be said about several factors,
such as the impact of negation in queries, main-memory buffering strategies, and the
implications of different environments (such as distributed, object oriented, real time, large
main memory, and secondary memories other than conventional disks). In part due to the
intricacy and number of interrelated factors involved, little of the fundamental theoretical
research on query optimization has found its way into practice. As the field is maturing,
salient aspects of query optimization are becoming isolated; this may provide some of the
foothold needed for significant theoretical work to emerge and be applied.

The Physical Model

The usual assumption of relational databases is that the current database state is so large
that it must be stored in secondary memory (e.g., on disk). Manipulation of the stored
data, including the application of algebraic operators, requires making copies in primary
memory of portions of the stored data and storing intermediate and final results again
in secondary memory. By far the major time expense in query processing, for a single-
processor system, is the number of disk pages that must be swapped in and out of primary
memory. In the case of distributed systems, the communication costs typically dominate
all others and become an important focus of optimization.

Viewed a little more abstractly, the physical level of relational query implementation
involves three basic activities: (1) generating streams of tuples, (2) manipulating streams
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of tuples (e.g., to perform projections), and (3) combining streams of tuples (e.g., to per-
form joins, unions, and intersections). Indexing methods, including primarily B-trees and
hash indexes, can be used to reduce significantly the size of some streams. Although not
discussed here, it is important to consider the cost of maintaining indexes and clusterings
as updates to the database occur.

Main-memory buffering techniques (including the partitioning of main memory into
segments and paging policies such as deleting pages based on policies of least recent use
and most recent use) can significantly impact the number of page I/Os used.

Speaking broadly, an evaluation plan (or access plan) for a query, a stored database
state, and a collection of existing indexes and other data structures is a specification of a
sequence of operations that will compute the answer to the query. The term evaluation
plan is used most often to refer to specifications that are at a low physical level but
may sometimes be used for higher-level specifications. As we shall see, query optimizers
typically develop several evaluation plans and then choose one for execution.

Implementation of Algebraic Operators

To illustrate the basic building blocks from which evaluation plans are constructed, we now
describe basic implementation techniques for some of the relational operators.

Selection can be realized in a straightforward manner by a scan of the argument
relation and can thus be achieved in linear time. Access structures such as B-tree indexes
or hash tables can be used to reduce the search time needed to find the selected tuples. In
the case of selections with single tuple output, this permits evaluation within essentially
constant time (e.g., two or three page fetches). For larger outputs, the selection may take
two or three page fetches per output tuple; this can be improved significantly if the input
relation is clustered (i.e., stored so that all tuples with a given attribute value are on the
same or contiguous disk pages).

Projection is a bit more complex because it actually calls for two essentially differ-
ent operations: tuple rewriting and duplicate elimination. The tuple rewriting is typically
accomplished by bringing tuples into primary memory and then rewriting them with coor-
dinate values permuted and removed as called for. This may yield a listing of tuples that
contains duplicates. If a pure relational algebra projection is to be implemented, then these
duplicates must be removed. One strategy for this involves sorting the list of tuples and
then removing duplicates; this takes time on the order of n log n. Another approach that is
faster in some cases uses a hash function that incorporates all coordinate values of a tuple.

Because of the potential expense incurred by duplicate elimination, most practical re-
lational languages permit duplicates in intermediate and final results. An explicit command
(e.g., distinct) that calls for duplicate elimination is typically provided. Even in languages
that support a pure algebra, it may be more efficient to leave duplicates in intermediate
results and perform duplicate elimination once as a final step.

The equi-join is typically much more expensive than selection or projection because
two relations are involved. The following naive nested loop implementation of ��F will
take time on the order of the product n1 × n2 of the sizes of the input relations I1, I2:
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J := ∅;
for each u in I1

for each v in I2

if u and v are joinable then J := J ∪ {u ��F v}.
Typically this can be improved by using the sort-merge algorithm, which independently
sorts both inputs according to the join attributes and then performs a simultaneous scan of
both relations, outputting join tuples as discovered. This reduces the running time to the
order of max(n1 log n1 + n2 log n2, size of output).

In many cases a more efficient implementation of join can be accomplished by a vari-
ant of the foregoing nested loop algorithm that uses indexes. In particular, replace the inner
loop by indexed retrievals to tuples of I2 that match the tuple of I1 under consideration.
Assuming that a small number of tuples of I2 match a given tuple of I1, this computes the
join in time proportional to the size of I1. We shall consider implementations of multiway
joins later in this section and again in Section 6.4. Additional techniques have been devel-
oped for implementing richer joins that include testing, e.g., relationships based on order
(≤).

Cross-product in isolation is perhaps the most expensive algebra operation: The output
necessarily has size the product of the sizes of the two inputs. In practice this arises only
rarely; it is much more common that selection conditions on the cross-product can be used
to transform it into some form of join.

Query Trees and Query Rewriting

Alternative query evaluation plans are usually generated by rewriting (i.e., by local trans-
formation rules). This can be viewed as a specialized case of program transformation. Two
kinds of transformations are typically used in query optimization: one that maps from the
higher-level language (e.g., the algebra) into the physical language, and others that stay
within the same language but lead to alternative, equivalent implementations of a given
construct.

We present shortly a family of rewriting rules that illustrates the general flavor of this
component of query optimizers (see Fig. 6.2). Unlike true optimizers, however, the rules
presented here focus exclusively on the algebra. Later we examine the larger issue of how
rules such as these are used to find optimal and near-optimal evaluation plans.

We shall use the SPC algebra, generalized by permitting positive conjunctive selection
and equi-join. A central concept used is that of query tree, which is essentially the parse
tree of an algebraic expression. Consider again Query (4.4), expressed here as a rule:

ans(xth, xad)←Movies(xti, “Bergman”, xac), Pariscope(xth, xti, xs),

Location(xth, xad, xp).

A naive translation into the generalized SPC algebra yields

q1 = π4,8σ2=“Bergman”((Movies ��1=2 Pariscope) ��4=1 Location).
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Figure 6.1: Two query trees for Query (4.4) from Chapter 4

The query tree of this expression is shown in Fig. 6.1(a).
To provide a rough idea of how evaluation costs might be estimated, suppose now that

Movies has 10,000 tuples, with about 5 tuples per movie; Pariscope has about 200 tuples,
and Location has about 100 tuples. Suppose further that in each relation there are about 50
tuples per page and that no indexes are available.

Under a naive evaluation of q1, an intermediate result would be produced for each
internal node of q1’s query tree. In this example, then, the join of Movies and Pariscope
would produce about 200× 5 = 1000 tuples, which (being about twice as wide as the input
tuples) will occupy about 40 pages. The second equi-join will yield about 1000 tuples that
fit 18 to a page, thus occupying about 55 pages. Assuming that there are four Bergman
films playing in one or two theaters each, the final answer will contain about six tuples.
The total number of page fetches performed here is about 206 for reading the input relations
(assuming that no indexes are available) and 95 for working with the intermediate relations.
Additional page fetches might be required by the join operations performed.

Consider now the query q2 whose query tree is illustrated in Fig. 6.1(b). It is easily
verified that this is equivalent to q1. Intuitively, q2 was formed from q1 by “pushing”
selections and projections as far “down” the tree as possible; this generally reduces the
size of intermediate results and thus of computing with them.
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In this example, assuming that all (i.e., about 20) of Bergman’s films are in Movies, the
selection on Movies will yield about 100 tuples; when projected these will fit onto a single
page. Joining with Pariscope will yield about six tuples, and the final join with Location
will again yield six tuples. Thus only one page is needed to hold the intermediate results
constructed during this evaluation, a considerable savings over the 95 pages needed by the
previous one.

It is often beneficial to combine several algebraic operators into a single implemented
operation. As a general rule of thumb, it is typical to materialize the inputs of each equi-
join. The equi-join itself and all unary operations directly above it in the query tree are
performed before output. The dashed ovals of Fig. 6.1(b) illustrate a natural grouping that
can be used for this tree. In practical systems, the implementation and grouping of operators
is typically considered in much finer detail.

The use of different query trees and, more generally, different evaluation plans can
yield dramatically different costs in the evaluation of equivalent queries. Does this mean
that the user will have to be extremely careful in expressing queries? The beauty of query
optimization is that the answer is a resounding no. The user may choose any representation
of a query, and the system will be responsible for generating several equivalent evaluation
plans and choosing the least expensive one. For this reason, even though the relational
algebra is conceptually procedural, it is implemented as an essentially declarative language.

In the case of the algebra, the generation of evaluation plans is typically based on the
existence of rules for transforming algebraic expressions into equivalent ones. We have
already seen rewrite rules in the context of transforming SPC and SPJR expressions into
normal form (see Propositions 4.4.2 and 4.4.6). A different set of rules is useful in the
present context due to the focus on optimizing the execution time and space requirements.

In Fig. 6.2 we present a family of representative rewrite rules (three with inverses) that
can be used for performing the transformations needed for optimization at the logical level.
In these rules we view cross-product as a special case of equi-join in which the selection
formula is empty. Because of their similarity to the rules used for the normal form results,
several of the rules are shown only in abstract form; detailed formulation of these, as well
as verification of their soundness, is left for the reader (see Exercise 6.1). We also include
the following rule:

Simplify-identities: replace π1,...,arity(q)q by q; replace σi=iq by q; replace q × {〈〉} by q;
replace q × {} by {}; and replace q ��1=1∧···∧arity(q)=arity(q)q by q.

Generating and Choosing between Evaluation Plans

As suggested in Fig. 6.2, in most cases the transformations should be performed in a certain
direction. For example, the fifth rule suggests that it is always desirable to push selections
through joins. However, situations can arise in which pushing a selection through a join is
in fact much more costly than performing it second (see Exercise 6.2). The broad variety
of factors that influence the time needed to execute a given query evaluation plan make
it virtually impossible to find an optimal one using purely analytic techniques. For this
reason, modern optimizers typically adopt the following pragmatic strategy: (1) generate
a possibly large number of alternative evaluation plans; (2) estimate the costs of executing
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σF(σF ′(q)) ↔ σF∧F ′(q)
π�j (π�k(q)) ↔ π�l(q)
σF (π�l(q)) ↔ π�l(σF ′(q))
q1 �� q2 ↔ q2 �� q1

σF(q1 ��G q2) → σF(q1) ��G q2

σF(q1 ��G q2) → q1 ��G σF ′(q2)

σF (q1 ��G q2) → q1 ��G′ q2

π�l(q1 ��G q2) → π�l(q1) ��G′ q2

π�l(q1 ��G q2) → q1 ��G′ π�k(q2)

Figure 6.2: Rewriting rules for SPC algebra

them; and (3) select the one of lowest cost. The database system then executes the selected
evaluation plan.

In early work, the transformation rules used and the method for evaluation plan genera-
tion were essentially intermixed. Motivated in part by the desire to make database systems
extensible, more recent proposals have isolated the transformation rules from the algo-
rithms for generating evaluation plans. This has the advantages of exposing the semantics
of evaluation plan generation and making it easier to incorporate new kinds of information
into the framework.

A representative system for generating evaluation plans was developed in connection
with the Exodus database toolkit. In this system, techniques from AI are used and, a set
of transformation rules is assumed. During processing, a set of partial evaluation plans is
maintained along with a set of possible locations where rules can be applied. Heuristics are
used to determine which transformation to apply next, so that an exhaustive search through
all possible evaluation plans can be avoided while still having a good chance of finding an
optimal or near-optimal evaluation plan. Several of the heuristics include weighting factors
that can be tuned, either automatically or by the dba, to reflect experience gained while
using the optimizer.

Early work on estimating the cost of evaluation plans was based essentially on
“thought experiments” similar to those used earlier in this chapter. These analyses use
factors including the size of relations, their expected statistical properties, selectivity fac-
tors of joins and selections, and existing indexes. In the context of large queries involving
multiple joins, however, it is difficult if not impossible to predict the sizes of intermediate
results based only on statistical properties. This provides one motivation for recent research
on using random and background sampling to estimate the size of subquery answers, which
can provide more reliable estimates of the overall cost of an evaluation plan.

Sideways Information Passing

We close this section by considering two practical approaches to implementing multiway
joins as they arise in practical query languages.

Much of the early research on practical query optimization was performed in con-
nection with the System R and INGRES systems. The basic building block of the query
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languages used in these systems (SQL and Quel, respectively) takes the form of “select-
from-where” clauses or blocks. For example, as detailed further in Chapter 7, Query (4.4)
can be expressed in SQL as

select Theater, Address
from Movies, Location, Pariscope
where Director = “Bergman”

and Movies.Title = Pariscope.Title
and Pariscope.Theater = Location.Theater.

This can be translated into the algebra as a join between the three relations of the from
part, using join condition given by the where and projecting onto the columns mentioned
in the select. Thus a typical select-from-where block can be expressed by an SPC query as

π�j (σF (R1 × · · · × Rn)).

With such expressions, the System R query optimizer pushes selections that affect a
single relation into the join and then considers evaluation plans based on left-to-right joins
that have the form

(. . . (Ri1 �� Ri2) �� · · · �� Rin)

using different orderings Ri1, . . . , Rin. We now present a heuristic based on “sideways in-
formation passing,” which is used in the System R optimizer for eliminating some possible
orderings from consideration. Interestingly, this heuristic has also played an important role
in developing evaluation techniques for recursive datalog queries, as discussed in Chap-
ter 13.

To describe the heuristic, we rewrite the preceding SPC query as a (generalized) rule
that has the form

(∗) ans(u)← R1(u1), . . . , Rn(un), C1, . . . , Cm,

where all equalities of the selection condition F are incorporated by using constants and
equating variables in the free tuples u1, . . . , un, and the expressions C1, . . . , Cm are con-
ditions in the selection condition F not captured in that way. (This might include, e.g.,
inequalities and conditions based on order.) We shall call the Ri(ui)’s relation atoms and
the Cj ’s constraint atoms.

Example 6.1.1 Consider the rule

ans(z)← P(a, v),Q(b,w, x), R(v,w, y), S(x, y, z), v ≤ x,

where a, b denote constants. A common assumption in this case is that there are few values
for v such that P(a, v) is satisfied. This in turn suggests that there will be few triples
(v,w, y) satisfying P(a, v) ∧ R(v,w, y). Continuing by transitivity, then, we also expect
there to be few 5-tuples (v,w, y, x, z) that satisfy the join of this with S(x, y, z).
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6-3.eps

S(x, y, z)

R(v, w, y)

P(a, v) Q(b, w, x)

Figure 6.3: A sip graph

More generally, the sideways information passing graph, or sip graph, of a rule ρ that
has the form (∗) just shown has vertexes the set of relation atoms of a rule, and includes
an undirected edge between atoms Ri(ui), Rj(uj) if ui and uj have at least one variable in
common. Furthermore, each node with a constant appearing is specially marked. The sip
graph for the rule of Example 6.1.1 is shown in Fig. 6.3.

Let us assume that the sip graph for a rule ρ is connected. In this case, a sideways
information passing strategy (sip strategy) for ρ is an ordering A1, . . . , An of the atoms in
the rule, such that for each j > 1, either

(a) a constant occurs in Aj ;

(b) Aj is a relational atom and there is at least one i < j such that {Ai,Aj} is an
edge of the sip graph of (ρ); or

(c) Aj is a constraint atom and each variable occurring in Aj occurs in some atom
Ai for i < j .

Example 6.1.2 A representative sample of the several sip strategies for the rule of Ex-
ample 6.1.1 is as follows:

P(a, v),Q(b,w, x), v ≤ x,R(v,w, y), S(x, y, z)

P (a, v), R(v,w, y), S(x, y, z), v ≤ x,Q(b,w, x)

Q(b,w, x), R(v,w, y), P (a, v), S(x, y, z), v ≤ x.

A sip strategy for the case in which the sip graph of rule ρ is not connected is a set
of sip strategies, one for each connected component of the sip graph. (Incorporation of
constraint atoms whose variables lie in distinct components is left for the reader.) The
System R optimizer focuses primarily on joins that have connected sip graphs, and it
considers only those join orderings that correspond to sip strategies. In some cases a more
efficient evaluation plan can be obtained if an arbitrary tree of binary joins is permitted;
see Exercise 6.5. While generating sip strategies the System R optimizer also considers
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alternative implementations for the binary joins involved and records information about
the orderings that the partial results would have if computed. An additional logical-level
technique used in System R is illustrated in the following example.

Example 6.1.3 Let us consider again the rule

ans(z)← P(a, v), R(v,w, y), S(x, y, z), v ≤ x,Q(b,w, x).

Suppose that a left-to-right join is performed according to the sip strategy shown. At
different intermediate stages certain variables can be “forgotten,” because they are not used
in the answer, nor are they used in subsequent joins. In particular, after the third atom the
variable y can be projected out, after the fourth atom v can be projected out, and after the
fifth atom w and x can be projected out. It is straightforward to formulate a general policy
for when to project out unneeded variables (see Exercise 6.4).

Query Decomposition: Join Detachment and Tuple Substitution

We now briefly discuss the two main techniques used in the original INGRES system for
evaluating join expressions. Both are based on decomposing multiway joins into smaller
ones.

While again focusing on SPC queries of the form

π�j (σF (R1 × · · · × Rn))

for this discussion, we use a slightly different notation. In particular, tuple variables rather
than domain variables are used. We consider expressions of the form

(∗∗) ans(s)← R1(s1), . . . , Rn(sn), C1, . . . , Cm, T ,

where s, s1, . . . , sn are tuple variables; C1, . . . , Cn are Boolean conditions referring to
coordinates of the variables s1, . . . , sn (e.g., s1.3 = s4.1 ∨ s2.4 = a); and T is a target
condition that gives a value for each coordinate of the target variable s. It is generally
assumed that none of C1, . . . , Cn has ∧ as its parent connective.

A condition Cj is called single variable if it refers to only one of the variables si. At
any point in the processing it is possible to apply one or more single-variable conditions to
some Ri, thereby constructing an intermediate relation R′i that can be used in place of Ri.
In the INGRES optimizer, this is typically combined with other steps.

Join detachment is useful for separating a query into two separate queries, where the
second refers to the first. Consider a query that has the specialized form

(†)

ans(t)← P1(p1), . . . , Pm(pm), C1, . . . , Ck, T ,

Q(q),

R1(r1), . . . , Rn(rn),D1, . . . , Dl,
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where conditions C1, . . . , Ck, T refer only to variables t, p1, . . . , pm, q and D1, . . . , Dl

refer only to q, r1, . . . , rn. It is easily verified that this is equivalent to the sequence

temp(q)←Q(q), R1(r1), . . . , Rn(rn),D1, . . . , Dl

ans(t)← P1(p1), . . . , Pm(pm), temp(q), C1, . . . , Ck, T .

In this example, variable q acts as a “pivot” around which the detachment is performed.
More general forms of join detachment can be developed in which a set of variables serves
as the pivot (see Exercise 6.6).

Tuple substitution chooses one of the underlying relations Rj and breaks the n-variable
join into a set of (n− 1)-variable joins, one for each tuple in Rj . Consider again a query
of form (∗∗) just shown. The tuple substitution of this on Ri is given by the “program”

for each r inRi do

ans(s) +← R1(s1), . . . , Ri−1(si−1), Ri+1(si+1), . . . , Rn(sn),

(C1, . . . , Cm, T )[si/r].

Here we use +← to indicate that ans is to accumulate the values stemming from all tuples
r in (the value of) Ri; furthermore, r is substituted for si in all of the conditions.

There is an obvious trade-off here between reducing the number of variables in the join
and the number of tuples in Ri. In the INGRES optimizer, each of the Ri’s is considered as a
candidate for forming the tuple substitution. During this process single-variable conditions
may be applied to the Ri’s to decrease their size.

6.2 Global Optimization

The techniques for creating evaluation plans presented in the previous section are essen-
tially local in their operation: They focus on clusters of contiguous nodes in a query tree. In
this section we develop an approach to the global optimization of conjunctive queries. This
allows a transformation of an algebra query that removes several joins in a single step, a
capability not provided by the techniques of the previous section. The global optimization
technique is based on an elegant Homomorphism Theorem.

The Homomorphism Theorem

For two queries q1, q2 over the same schema R, q1 is contained in q2, denoted q1 ⊆
q2, if for each I over R, q1(I) ⊆ q2(I). Clearly, q1 ≡ q2 iff q1 ⊆ q2 and q2 ⊆ q1. The
Homomorphism Theorem provides a characterization for containment and equivalence of
conjunctive queries.

We focus here on the tableau formalism for conjunctive queries, although the rule-
based formalism could be used equally well. In addition, although the results hold for
tableau queries over database schemas involving more than one relation, the examples
presented focus on queries over a single relation.

Recall the notion of valuation—a mapping from variables to constants extended to be
the identity on constants and generalized to free tuples and tableaux in the natural fashion.
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q0 = (T0, 〈x, y〉) q1 = (T1, 〈x, y〉) q2 = (T2, 〈x, y〉) qω = (Tω, 〈x, y〉)

Figure 6.4: Tableau queries used to illustrate the Homomorphism Theorem

Valuations are used in the definition of the semantics of tableau queries. More generally, a
substitution is a mapping from variables to variables and constants, which is extended to be
the identity on constants and generalized to free tuples and tableaux in the natural fashion.
As will be seen, substitutions play a central role in the Homomorphism Theorem.

We begin the discussion with two examples. The first presents several simple examples
of the Homomorphism Theorem in action.

Example 6.2.1 Consider the four tableau queries shown in Fig. 6.4. By using the Ho-
momorphism Theorem, it can be shown that q0 ⊆ q1 ⊆ q2 ⊆ qω.

To illustrate the flavor of the proof of the Homomorphism Theorem, we argue infor-
mally that q1 ⊆ q2. Note that there is substitution θ such that θ(T2)⊆ T1 and θ(〈x, y〉)=
〈x, y〉 [e.g., let θ(x1)= θ(x2)= x1 and θ(y1)= θ(y2)= y1]. Now suppose that I is an in-
stance over AB and that t ∈ q1(I ). Then there is a valuation ν such that ν(T1) ⊆ I and
ν(〈x, y〉)= t . It follows that θ ◦ ν is a valuation that embeds T2 into I with θ ◦ ν(〈x, y〉)=
t , whence t ∈ q2(I ).

Intuitively, the existence of a substitution embedding the tableau of q2 into the tableau
of q1 and mapping the summary of q2 to the summary of q1 implies that q1 is more re-
strictive than q2 (or more correctly, no less restrictive than q2.) Surprisingly, the Homo-
morphism Theorem states that this is also a necessary condition for containment (i.e., if
q ⊆ q ′, then q is more restrictive than q ′ in this sense).

The second example illustrates a limitation of the techniques discussed in the previous
section.

Example 6.2.2 Consider the two tableau queries shown in Fig. 6.5. It can be shown that
q ≡ q ′ but that q ′ cannot be obtained from q using the rewrite rules of the previous section
(see Exercise 6.3) or the other optimization techniques presented there.
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q = (T, u) q′ = (T ′, u)

Figure 6.5: Pair of equivalent tableau queries

Let q = (T, u) and q ′ = (T′, u′) be two tableau queries over the same schema R. A
homomorphism from q ′ to q is a substitution θ such that θ(T′)⊆ T and θ(u′)= u.

Theorem 6.2.3 (Homomorphism Theorem) Let q = (T, u) and q ′ = (T′, u′) be tab-
leau queries over the same schema R. Then q ⊆ q ′ iff there exists a homomorphism from
(T′, u′) to (T, u).

Proof Suppose first that there exists a homomorphism θ from q ′ to q. Let I be an instance
over R. To see that q(I) ⊆ q ′(I), suppose that w ∈ q(I). Then there is a valuation ν that
embeds T into I such that ν(u)= w. It is clear that θ ◦ ν embeds T′ into I and θ ◦ ν(u′)= w,
whence w ∈ q ′(I) as desired.

For the opposite inclusion, suppose that q ⊆ q ′ [i.e., that (T, u)⊆ (T′, u′)]. Speaking
intuitively, we complete the proof by applying both q and q ′ to the “instance” T. Because
q will yield the free tuple u, q ′ also yields u (i.e., there is an embedding θ of T′ into T that
maps u′ to u). To make this argument formal, we construct an instance IT that is isomorphic
to T.

Let V be the set of variables occurring in T. For each x ∈ V , let ax be a new distinct
constant not occurring in T or T′. Let µ be the valuation mapping each x to ax, and
let IT = µ(T). Because µ is a bijection from V to µ(V ), and because µ(V ) has empty
intersection with the constants occurring in T, the inverse µ−1 of µ is well defined on
adom(IT).

It is clear that µ(u) ∈ q(IT), and so by assumption, µ(u) ∈ q ′(IT). Thus there is a
valuation ν that embeds T′ into IT such that ν(u′) = µ(u). It is now easily verified that
ν ◦ µ−1 is a homomorphism from q ′ to q.

Permitting a slight abuse of notation, we have the following (see Exercise 6.8).

Corollary 6.2.4 For tableau queries q = (T, u) and q ′ = (T′, u′), q ⊆ q ′ iff u ∈ q ′(T).
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We also have

Corollary 6.2.5 Tableau queries q, q ′ over schema R are equivalent iff there are
homomorphisms from q to q ′ and from q ′ to q.

In particular, if q = (T, u) and q ′ = (T′, u′) are equivalent, then u and u′ are identical
up to one-one renaming of variables.

Only one direction of the preceding characterization holds if the underlying domain is
finite (see Exercise 6.12). In addition, the direct generalization of the theorem to tableau
queries with equality does not hold (see Exercise 6.9).

Query Optimization by Tableau Minimization

Although the Homomorphism Theorem yields a decision procedure for containment and
equivalence between conjunctive queries, it does not immediately provide a mechanism,
given a query q, to find an “optimal” query equivalent to q. The theorem is now applied to
obtain just such a mechanism.

We note first that there are simple algorithms for translating tableau queries into
(satisfiable) SPC queries and vice versa. More specifically, given a tableau query, the
corresponding generalized SPC query has the form π�j (σF (R1 × · · · × Rk)), where each
component Ri corresponds to a distinct row of the tableau. For the opposite direction, one
algorithm for translating SPC queries into tableau queries is first to translate into the normal
form for generalized SPC queries and then into a tableau query. A more direct approach
that inductively builds tableau queries corresponding to subexpressions of an SPC query
can also be developed (see Exercise 4.18). Analogous remarks apply to SPJR queries.

The goal of the optimization presented here is to minimize the number of rows in
the tableau. Because the number of rows in a tableau query is one more than the number
of joins in the SPC (SPJR) query corresponding to that tableau (see Exercise 4.18c), the
tableau minimization procedure provides a way to minimize the number of joins in SPC
and SPJR queries.

Surprisingly, we show that an optimal tableau query equivalent to tableau query q can
be obtained simply by eliminating some rows from the tableau of q.

We say that a tableau query (T, u) is minimal if there is no query (S, v) equivalent to
(T, u) with |S|< |T| (i.e., where S has strictly fewer rows than T).

We can now demonstrate the following.

Theorem 6.2.6 Let q = (T, u) be a tableau query. Then there is a subset T′ of T such
that q ′ = (T′, u) is a minimal tableau query and q ′ ≡ q.

Proof Let (S, v) be a minimal tableau that is equivalent to q. By Corollary 6.2.5, there
are homomorphisms θ from q to (S, v) and λ from (S, v) to q. Let T′ = θ ◦ λ(S). It is
straightforward to verify that (T′, u)≡ q and |T′| ≤ |S|. By minimality of (S, v), it follows
that |T′| = |S|, and (T′, u) is minimal.

Example 6.2.7 illustrates how one might minimize a tableau by hand.
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R A B C

u1 x2 y1 z

u2 x y1 z1

u3 x1 y z1

u4 x y2 z2

u5 x2 y2 z

u x y z

Figure 6.6: The tableau (T , u)

Example 6.2.7 Let R be a relation schema of sort ABC and (T , u) the tableau over R

in Fig. 6.6. To minimize (T , u), we wish to detect which rows of T can be eliminated.
Consider u1. Suppose there is a homomorphism θ from (T , u) onto itself that eliminates
u1 [i.e., u1 �∈ θ(T )]. Because any homomorphism on (T , u) is the identity on u, θ(z)= z.
Thus θ(u1) must be u5. But then θ(y1) = y2, and θ(u2) ∈ {u4, u5}. In particular, θ(z1) ∈
{z2, z}. Because u3 involves z1, it follows that θ(u3) �= u3 and θ(y) �= y. But the last
inequality is impossible because y is in u so θ(y) = y. It follows that row u1 cannot be
eliminated and is in the minimal tableau. Similar arguments show that u2 and u3 cannot
be eliminated. However, u4 and u5 can be eliminated using θ(y2) = y1, θ(z2) = z1 (and
identity everywhere else). The preceding argument emphasizes the global nature of tableau
minimization.

The preceding theorem suggests an improvement over the optimization strategies de-
scribed in Section 6.1. Specifically, given a (satisfiable) conjunctive query q, the following
steps can be used:

1. Translate q into a tableau query.

2. Minimize the number of rows in the tableau of this query.

3. Translate the result into a generalized SPC expression.

4. Apply the optimization techniques of Section 6.1.

As illustrated by Examples 6.2.2, 6.2.7, and 6.2.8, this approach has the advantage of
performing global optimizations that typical query rewriting systems cannot achieve.

Example 6.2.8 Consider the relation schema R of sort ABC and the SPJR query q

over R:

πAB(σB=5(R)) �� πBC(πAB(R) �� πAC(σB=5(R))).
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R A B C

x 5 z1

x1 5 z2

x1 5 z

u x 5 z

Figure 6.7: Tableau equivalent to q

The tableau (T , u) corresponding to it is that of Fig. 6.7. To minimize (T , u), we wish to
find a homomorphism that ”folds” T onto a subtableau with minimal number of rows. (If
desired, this can be done in several stages, each of which eliminates one or more rows.)
Note that the first row cannot be eliminated because every homomorphism is the identity
on u and therefore on x. A similar observation holds for the third row. However, the second
row can be eliminated using the homomorphism that maps z2 to z and is the identity
everywhere else. Thus the minimal tableau equivalent to (T , u) consists of the first and
third rows of T . An SPJR query equivalent to the minimized tableau is

πAB(σB=5(R)) �� πBC(σB=5(R)).

Thus the optimization procedure resulted in saving one join operation.

Before leaving minimal tableau queries, we present a result that describes a strong
correspondence between equivalent minimal tableau queries. Two tableau queries (T, u),
(T′, u′) are isomorphic if there is a one-one substitution θ that maps variables to variables
such that θ((T, u)) = (T′, u′). In other words, (T , u) and (T ′, u′) are the same up to
renaming of variables. The proof of this result is left to the reader (see Exercise 6.11).

Proposition 6.2.9 Let q = (T, u) and q ′ = (T′, u′) be minimal and equivalent. Then q

and q ′ are isomorphic.

Complexity of Tableau Decision Problems

The following theorem shows that determining containment and equivalence between
tableau queries is np-complete and tableau query minimization is np-hard.

Theorem 6.2.10 The following problems, given tableau queries q, q ′, are np-complete:

(a) Is q ⊆ q ′?
(b) Is q ≡ q ′?
(c) Suppose that the tableau of q is obtained by deleting free tuples of the tableau of

q ′. Is q ≡ q ′ in this case?
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These results remain true if q, q ′ are restricted to be single-relation typed tableau queries
that have no constants.

Proof The proof is based on a reduction from the “exact cover” problem to the different
tableau problems. The exact cover problem is to decide, given a set X = {x1, . . . , xn} and
a collection S = {S1, . . . , Sm} of subsets of X such that ∪S =X, whether there is an exact
cover of X by S (i.e., a subset S ′ of S such that each member of X occurs in exactly one
member of S ′). The exact cover problem is known to be np-complete.

We now sketch a polynomial transformation from instances E = (X,S) of the exact
cover problem to pairs qE, q ′E of typed tableau queries. This construction is then applied
in various ways to obtain the np-completeness results. The construction is illustrated in
Fig. 6.8.

Let E = (X,S) be an instance of the exact cover problem, where X = {x1, . . . , xn} and
S = {S1, . . . , Sm}. Let A1, . . . , An, B1, . . . , Bm be a listing of distinct attributes, and let R
be chosen to have this set as its sort. Both qE and q ′E are over relation R, and both queries
have as summary t = 〈A1 : a1, . . . , An : an〉, where a1, . . . , an are distinct variables.

Let b1, . . . , bm be an additional set of m distinct variables. The tableau TE of qE has n

tuples, each corresponding to a different element of X. The tuple for xi has ai for attribute
Ai; bj for attribute Bj for each j such that xi ∈ Sj ; and a new, distinct variable for all other
attributes.

Let c1, . . . , cm be an additional set of m distinct variables. The tableau T ′E of q ′E has m

tuples, each corresponding to a different element of S. The tuple for Sj has ai for attribute
Ai for each i such that xi ∈ Sj ; cj ′ for attribute Bj ′ for each j ′ such that j ′ �= j ; and a new,
distinct variable for all other attributes.

To illustrate the construction, let E = (X,S) be an instance of the exact cover problem,
where X = {x1, x2, x3, x4} and S = {S1, S2, S3} where

S1 = {x1, x3}
S2 = {x2, x3, x4}
S3 = {x2, x4}.

The tableau queries qξ and q ′ξ corresponding to (X,S) are shown in Fig. 6.8. (Here the
blank entries indicate distinct, new variables.) Note that ξ = (X,S) is satisfiable, and
q ′ξ ⊆ qξ .

More generally, it is straightforward to verify that for a given instance ξ = (X,S) of
the exact cover problem, X has an exact cover in S iff q ′ξ ⊆ qξ . Verification of this, and of
parts (b) and (c) of the theorem, is left for Exercise 6.16.

A subclass of the typed tableau queries for which containment and equivalence is
decidable in polynomial time is considered in Exercise 6.21.

Although an np-completeness result often suggests intractability, this conclusion may
not be warranted in connection with the aforementioned result. The complexity there is
measured relative to the size of the query rather than in terms of the underlying stored
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Figure 6.8: Tableau queries corresponding to an exact cover

data. Given an n-way join, the System R optimizer may potentially consider n! evaluation
strategies based on different orderings of the n relations; this may be exponential in the size
of the query. In many cases, the search for a minimal tableau (or optimal left-to-right join)
may be justified because the data is so much larger than the initial query. More generally,
in Part D we shall examine both “data complexity” and “expression complexity,” where the
former focuses on complexity relative to the size of the data and the latter relative to the
size of queries.

6.3 Static Analysis of the Relational Calculus

We now demonstrate that the decidability results for conjunctive queries demonstrated in
the previous section do not hold when negation is incorporated (i.e., do not hold for the first-
order queries). In particular, we present a general technique for proving the undecidability
of problems involving static analysis of first-order queries and demonstrate the undecid-
ability of three such problems.

We begin by focusing on the basic property of satisfiability. Recall that a query q

is satisfiable if there is some input I such that q(I) is nonempty. All conjunctive queries
are satisfiable (Proposition 4.2.2), and if equality is incorporated then satisfiability is not
guaranteed but it is decidable (Exercise 4.5). This no longer holds for the calculus.

To prove this result, we use a reduction of the Post Correspondence Problem (PCP)
(see Chapter 2) to the satisfiability problem. The reduction is most easily described in terms
of the calculus; of course, it can also be established using the algebras or nr-datalog¬.

At first glance, it would appear that the result follows trivially from the analogous re-
sult for first-order logic (i.e., the undecidability of satisfiability of first-order sentences).
There is, however, an important difference. In conventional first-order logic (see Chap-
ter 2), both finite and infinite interpretations are considered. Satisfiability of first-order sen-
tences is co-recursively enumerable (co-r.e.) but not recursive. This follows from Gödel’s
Completeness Theorem. In contrast, in the context of first-order queries, only finite in-
stances are considered legal. This brings us into the realm of finite model theory. As will
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be shown, satisfiability of first-order queries is recursively enumerable (r.e.) but not recur-
sive. (We shall revisit the contrast between conventional first-order logic and the database
perspective, i.e., finite model theory, in Chapters 9 and 10.)

Theorem 6.3.1 Satisfiability of relational calculus queries is r.e. but not recursive.

Proof To see that the problem is r.e., imagine a procedure that, when given query q over
R as input, generates all instances I over R and tests q(I)= ∅ until a nonempty answer is
found.

To show that satisfiability is not recursive, we reduce the PCP to the satisfiability
problem. In particular, we show that if there were an algorithm for solving satisfiability,
then it could be used to construct an algorithm that solves the PCP.

LetP = (u1, . . . , un; v1, . . . , vn) be an instance of the PCP (i.e., a pair of sequences of
nonempty words over alphabet {0,1}). We describe now a (domain independent) calculus
query qP = {〈〉 | ϕP} with the property that qP is satisfiable iff P has a solution.

We shall use a relation schema R having relations ENC(ODING) with sort [A,B,

C,D,E] and SYNCH(RONIZATION) with sort [F,G]. The query qP shall use constants
{0, 1, $, c1, . . . , cn, d1, . . . , dn}. (The use of multiple relations and constants is largely a
convenience; the result can be demonstrated using a single ternary relation and no con-
stants. See Exercise 6.19.)

To illustrate the construction of the algorithm, consider the following instance of the
PCP:

u1 = 011, u2 = 011, u3 = 0; v1 = 0, v2 = 11, v3 = 01100.

Note that s = (1, 2, 3, 2) is a solution of this instance. That is,

u1u2u3u2 = 0110110011= v1v2v3v2.

Figure 6.9 shows an input instance Is over R which encodes this solution and satisfies the
query qP constructed shortly.

In the relation ENC of this figure, the first two columns form a cycle, so that the 10
tuples can be viewed as a sequence rather than a set. The third column holds a listing of the
word w = 0110110011 that witnesses the solution to P ; the fourth column describes which
words of sequence (u1, . . . , un) are used to obtain w; and the fifth column describes which
words of sequence (v1, . . . , vn) are used. The relation SYNCH is used to synchronize the
two representations of w by listing the pairs corresponding to the beginnings of new u-
words and v-words.

The formula ϕP constructed now includes subformulas to test whether the various
conditions just enumerated hold on an input instance. In particular,

ϕ = ϕENC-key ∧ ϕcycle ∧ ϕSYNCH-keys ∧ ϕu-encode ∧ ϕv-encode ∧ ϕu-v-synch,

where, speaking informally,
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ENC A B C D E SYNCH F G

$ a1 0 c1 d1 $ $

a1 a2 1 c1 d2 a3 a1

a2 a3 1 c1 d2 a6 a3

a3 a4 0 c2 d3 a7 a8

a4 a5 1 c2 d3

a5 a6 1 c2 d3

a6 a7 0 c3 d3

a7 a8 0 c2 d3

a8 a9 1 c2 d2

a9 $ 1 c2 d2

Figure 6.9: Encoding of a solution to PCP

ϕENC-key: states that the first column of ENC is a key; that is, each value occurring in the
A column occurs in exactly one tuple of ENC.

ϕcycle: states that constant $ occurs in a cycle with length > 1 in the first two columns of
ENC. (There may be other cycles, which can be ignored.)

ϕSYNCH-keys: states that both the first and second columns of SYNCH are keys.

ϕu-encode: states that for each value x occurring in the first column of SYNCH, if tuple
〈x1, y1, z1, ci, dj1〉 is in ENC, then there are at least |ui| − 1 additional tuples in ENC
“after” this tuple, all with value ci in the fourth coordinate, and if these tuples are

〈x2, y2, z2, ci, dj2〉, . . . , 〈xk, yk, zk, ci, djk〉

then z1 . . . zk = ui; none of x2, . . . , xk occurs in the first column of SYNCH; and if
yk �= $, then the A value “after” xk occurs in the first column of SYNCH.

ϕv-encode: is analogous to ϕu-encode.

ϕu-v-synch: states that (1) 〈$, $〉 is in SYNCH; (2) if a tuple 〈x, y〉 is in SYNCH, then the
associated u-word and v-word have the same index; and (3) if a tuple 〈x, y〉 is in
SYNCH , and either x or y are not the “maximum” A value occurring in F or G, then
there exists a tuple 〈x′, y′〉 in SYNCH, where x′ is the first A value “after” x occurring
in F and y′ is the first A value “after” y occurring in G. Finding the A values “after”
x and y is done as in ϕu-encode.

The constructions of these formulas are relatively straightforward; we give two of them
here and leave the others for the reader (see Exercise 6.19). In particular, we let

ψ(x, y)= ∃p, q, r ENC(x, y, p, q, r)

and set
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ϕcycle = ∃x(ψ(x, $) ∧ ¬(x = $)) ∧ ∃y(ψ($, y) ∧ ¬(y = $))∧
∀x((∃yψ(x, y))→ (∃zψ(z, x)))∧
∀x((∃yψ(y, x))→ (∃zψ(x, z)))∧
∀x, y1, y2(ψ(y1, x) ∧ ψ(y2, x)→ y1 = y2).

If ENC satisfies ϕENC−key ∧ ϕcycle, then the first two coordinates of ENC hold one or more
disjoint cycles, exactly one of which contains the value $.

Parts (1) and (2) of ϕu-v-synch are realized by the formula

SYNCH($, $)∧
∀x, y(SYNCH(x, y)→

∃s, p, r, t, p′, q((ENC(x, s, p, c1, r) ∧ ENC(y, t, p′, q, d1))∨
(ENC(x, s, p, c2, r) ∧ ENC(y, t, p′, q, d2))∨

...

(ENC(x, s, p, cn, r) ∧ ENC(y, t, p′, q, dn)))).

Verifying that the query qP is satisfiable if and only if P has a solution is left to the
reader (see Exercise 6.19).

The preceding theorem can be applied to derive other important undecidability results.

Corollary 6.3.2

(a) Equivalence and containment of relational calculus queries are co-r.e. and not
recursive.

(b) Domain independence of a relational calculus query is co-r.e. and not recursive.

Proof It is easily verified that the two problems of part (a) and the problem of part (b)
are co-r.e. (see Exercise 6.20). The proofs of undecidability are by reduction from the
satisfiability problem. For equivalence, suppose that there were an algorithm for deciding
equivalence between relational calculus queries. Then the satisfiability problem can be
solved as follows: For each query q = {x1, . . . , xn | ϕ}, this is unsatisfiable if and only if it
is equivalent to the empty query q∅. This demonstrates that equivalence is not decidable.
The undecidability of containment also follows from this.

For domain independence, let ψ be a sentence whose truth value depends on the
underlying domain. Then {x1, . . . , xn | ϕ ∧ ψ} is domain independent if and only if ϕ is
unsatisfiable.

The preceding techniques can also be used to show that “true” optimization cannot be
performed for the first-order queries (see Exercise 6.20d).
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6.4 Computing with Acyclic Joins

We now present a family of interesting theoretical results on the problem of computing the
projection of a join. In the general case, if both the data set and the join expression are al-
lowed to vary, then the time needed to evaluate such expressions appears to be exponential.
The measure of complexity here is a combination of both “data” and “expression” com-
plexity, and is somewhat non-standard; see Part D. Interestingly, there is a special class
of joins, called acyclic, for which this evaluation is polynomial. A number of interesting
properties of acyclic joins are also presented.

For this section we use the named perspective and focus exclusively on flat project-join
queries of the form

q = πX(R1 �� · · · �� Rn)

involving projection and natural join. For this discussion we assume that R = R1, . . . , Rn

is a fixed database schema, and we use I= (I1, . . . , In) to refer to instances over it.
One of the historical motivations for studying this problem stems from the pure univer-

sal relation assumption (pure URA). An instance I = (I1, . . . , In) over schema R satisfies
the pure URA if I = (πR1(I ), . . . , πRn(I )) for some “universal” instance I over ∪n

j=1Rj .
If I satisfies the pure URA, then I can be stored, and queries against the corresponding
instance I can be answered using joins of components in I. The URA will be considered
in more depth in Chapter 11.

Worst-Case Results

We begin with an example.

Example 6.4.1 Let n > 0 and consider the relations Ri[AiAi+1], i ∈ [1, n − 1], as
shown in Fig. 6.10(a). It is easily seen that the natural join of R1, . . . , Rn−1 is exponential
in n and thus exponential in the size of the input query and data.

Now suppose that n is odd. Let Rn be as in Fig. 6.10(b), and consider the natural join of
R1, . . . , Rn. This is empty. On the other hand, the join of any i of these for i < n has size
exponential in i. It follows that the algorithms of the System R and INGRES optimizers
take time exponential in the size of the input and output to evaluate this query.

The following result implies that it is unlikely that there is an algorithm for computing
projections of joins in time polynomial in the size of the query and the data.

Theorem 6.4.2 It is np-complete to decide, given project-join expression q0 over R,
instance I of R, and tuple t , whether t ∈ q0(I). This remains true if q0 and I are restricted
so that |q0(I)| ≤ 1.

Proof The problem is easily seen to be in np. For the converse, recall from Theo-
rem 6.2.10(a) that the problem of tableau containment is np-complete, even for single-
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Ri Ai Ai+1 Rn An A1

0 a 0 a

0 b 0 b

1 a 1 a

1 b 1 b

a 0 a 0

a 1 a 1

b 0 b 0

b 1 b 1

(a) (b)

Figure 6.10: Relations to illustrate join sizes

relation typed tableaux having no constants. We reduce this to the current problem. Let
q = (T , u) and q ′ = (T ′, u′) be two typed constant-free tableau queries over the same rela-
tion schema. Recall from the Homomorphism Theorem that q ⊆ q ′ iff there is a homomor-
phism of q ′ to q, which holds iff u ∈ q ′(T ).

Assume that the sets of variables occurring in q and in q ′ are disjoint. Without loss
of generality, we view each variable occurring in q to be a constant. For each variable
x occurring in q ′, let Ax be a distinct attribute. For free tuple v = (x1, . . . , xn) in T ′, let
Iv over Ax1, . . . , Axn be a copy of T , where the ith attribute is renamed to Axi . Letting
u′ = 〈u′1, . . . , u′m〉, it is straightforward to verify that

q ′(T )= πAu′
1
,...,Au′m

(��{Iv | v ∈ T ′}).

In particular, u ∈ q ′(T ) iff u is in this projected join.
To see the last sentence of the theorem, let u= 〈u1, . . . , um〉 and use the query

πAu′
1
,...,Au′m

(��{Iv | v ∈ T ′} �� {〈Au′1
: u1, . . . , Au′m : um〉}).

Theorem 6.2.10(a) considers complexity relative to the size of queries. As applied
in the foregoing result, however, the queries of Theorem 6.2.10(a) form the basis for
constructing a database instance {Iv | v ∈ T ′}. In contrast with the earlier theorem, the
preceding result suggests that computing projections of joins is intractable relative to the
size of the query, the stored data, and the output.

Acyclic Joins

In Example 6.4.1, we may ask what is the fundamental difference between R1 �� · · · ��
Rn−1 and R1 �� · · · �� Rn? One answer is that the relation schemas of the latter join form a
cycle, whereas the relation schemas of the former do not.

We now develop a formal notion of acyclicity for joins and four properties equivalent
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to it. All of these are expressed most naturally in the context of the named perspective for
the relational model. In addition, the notion of acyclicity is sometimes applied to database
schemas R= {R1, . . . , Rn} because of the natural correspondence between the schema R
and the join R1 �� · · · �� Rn.

We begin by describing four interesting properties that are equivalent to acyclicity.
Let R = {R1, . . . , Rn} be a database schema, where each relation schema has a different
sort. An instance I of R is said to be pairwise consistent if for each pair j, k ∈ [1, n],
πRj

(Ij �� Ik)= Ij . Intuitively, this means that no tuple of Ij is “dangling” or “lost” after
joining with Ik. Instance I is globally consistent if for each j ∈ [1, n], πRj

(��I)= Ij (i.e.,
no tuple of Ij is dangling relative to the full join). Pairwise consistency can be checked in
ptime, but checking global consistency is np-complete (Exercise 6.25). The first property
that is equivalent to acyclicity is:

Property (1): Each instance I that is pairwise consistent is globally consistent.

Note that the instance for schema {R1, . . . , Rn−1} of Example 6.4.1 is both pairwise and
globally consistent, whereas the instance for {R1, . . . , Rn} is pairwise but not globally
consistent.

The second property we consider is motivated by query processing in a distributed
environment. Suppose that each relation of I is stored at a different site, that the join ��I is
to be computed, and that communication costs are to be minimized. A very naive algorithm
to compute the join is to send each of the Ij to a specific site and then form the join. In
the general case this may cause the shipment of many unneeded tuples because they are
dangling in the full join.

The semi-join operator can be used to alleviate this problem. Given instances I, J over
R, S, then semi-join of I and J is

I �< J = πR(I �� J ).

It is easily verified that I �� J = (I �< J) �� J = (J �< I) �� I . Furthermore there are
many cases in which computing the join in one of these ways can reduce data transmission
costs if I and J are at different nodes of a distributed database (see Exercise 6.24).

Suppose now that R satisfies Property (1). Given an instance I distributed across the
network, one can imagine replacing each relation Ij by its semi-join with other relations of
I. If done cleverly, this might be done with communication cost polynomial in the size of
I, with the result of the replacements satisfying pairwise consistency. Given Property (1),
all relations can now be shipped to a common site, safe in the knowledge that no dangling
tuples have been shipped.

More generally, a semi-join program for R is a sequence of commands

Ri1 := Ri1 �< Rj1;
Ri2 := Ri2 �< Rj2;

...
Rip := Rip �< Rjp;



6.4 Computing with Acyclic Joins 129

R1 A B C R2 B C D E R3 B C D G R4 C D E F

0 3 2 3 2 1 0 3 2 1 4 2 1 1 4

0 1 2 1 2 3 0 1 2 3 2 2 3 0 1

3 1 2 1 3 1 0 1 3 1 0 3 1 0 2

1 1 3 1 3 1 1 3 1 0 3

Figure 6.11: Instance for Example 6.4.3

(In practice, the original values of Rij would not be overwritten; rather, a scratch copy
would be made.) This is a full reducer for R if for each instance I over R, applying this
program yields an instance I′ that is globally consistent.

Example 6.4.3 Let R = {ABC,BCDE,BCDG,CDEF } = {R1, R2, R3, R4} and con-
sider the instance I of R shown in Fig. 6.11. I is not globally consistent; nor is it pairwise
consistent.

A full reducer for this schema is

R2 := R2 �< R1;
R2 := R2 �< R4;
R3 := R3 �< R2;
R2 := R2 �< R3;
R4 := R4 �< R2;
R1 := R1 �< R2;

Note that application of this program to I has the effect of removing the first tuple from
each relation.

We can now state the second property:

Property (2): R has a full reducer.

It can be shown that the schema {R1, . . . , Rn−1} of Example 6.4.1 has a full reducer,
but {R1, . . . , Rn} does not (see Exercise 6.26).

The next property provides a way to view a schema as a tree with certain properties.
A join tree of a schema R is an undirected tree T = (R, E) such that

(i) each edge (R,R′) is labeled by the set of attributes R ∩ R′; and

(ii) for every pair R,R′ of distinct nodes, for each A ∈ R ∩ R′, each edge along the
unique path between R and R′ includes label A.

Property (3): R has a join tree.

For example, two join trees of the schema R of Figure 6.11 are T1 = (R, {(R1, R2),

(R2, R3), (R2, R4)}) and T2 = (R, {(R1, R3), (R3, R2), (R2, R4)}). (The edge labels are not
shown.)
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(a)

(c)

A

B C

R1[AB], R2[BC], R3[AC]

T1[ABC], T2[BCD], T3[ABD], T4[ACD]

(b)

A

C E

S1[ABC], S2[CDE], S3[AFE], S4[ACE]

B F

D

A

B D

C

Figure 6.12: Three schemas and their hypergraphs

The fourth property we consider focuses entirely on the database schema R and is
based on a simple algorithm, called the GYO algorithm.1 This is most easily described in
terms of the hypergraph corresponding to R. A hypergraph is a pair F = (V , F ), where
V is a set of vertexes and F is family of distinct nonempty subsets of V , called edges
(or hyperedges). The hypergraph of schema R is the pair (U,R), where U = ∪R. In what
follows, we often refer to a database schema R as a hypergraph. Three schemas and their
hypergraphs are shown in Fig. 6.12.

A hypergraph is reduced if there is no pair f, f ′ of distinct edges with f a proper
subset of f ′. The reduction of F = (V , F ) is (V , F − {f ∈ F | ∃f ′ ∈ F with f ⊂ f ′}).
Suppose that R is a schema and I over R satisfies the pure URA. If Rj ⊂ Rk, then Ij =

1 This is so named in honor of M. Graham and the team C. T. Yu and M. Z. Ozsoyoglu, who
independently came to essentially this algorithm.
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πRj
(Ik), and thus Ij holds redundant information. It is thus natural in this context to assume

that R, viewed as a hypergraph, is reduced.
An ear of hypergraphF = (V , F ) is an edge f ∈ F such that for some distinct f ′ ∈ F ,

no vertex of f − f ′ is in any other edge or, equivalently, such that f ∩ (∪(F − {f }))⊆ f ′.
In this case, f ′ is called a witness that f is an ear. As a special case, if there is an edge f

of F that intersects no other edge, then f is also considered an ear.
For example, in the hypergraph of Fig. 6.12(b), edge ABC is an ear, with witness ACE.

On the other hand, the hypergraph of Fig. 6.12(a) has no ears.
We now have

Algorithm 6.4.4 (GYO Algorithm)

Input: Hypergraph F = (V , F )

Output: A hypergraph involving a subset of edges of F
Do until F has no ears:

1. Nondeterministically choose an ear f of F .
2. Set F := (V ′, F − {f }), where V ′ = ∪(F − {f }).

The output of the GYO algorithm is always reduced.
A hypergraph is empty if it is (∅,∅). In Fig. 6.12, it is easily verified that the output

of the GYO algorithm is empty for part (b), but that parts (a) and (c) have no ears and so
equal their output under the algorithm. The output of the GYO algorithm is independent of
the order of steps taken (see Exercise 6.28).

We now state the following:

Property (4): The output of the GYO algorithm on R is empty.

Speaking informally, Example 6.4.1 suggests that an absence of cycles yields Prop-
erties (1) to (4), whereas the presence of a cycle makes these properties fail. This led
researchers in the late 1970s to search for a notion of acyclicity for hypergraphs that
both generalized the usual notion of acyclicity for conventional undirected graphs and was
equivalent to one or more of the aforementioned properties. For example, the conventional
notion of hypergraph acyclicity from graph theory is due to C. Berge; but it turns out that
this condition is necessary but not sufficient for the four properties (see Exercise 6.32).

We now define the notion of acyclicity that was found to be equivalent to the four
aforementioned properties. Let F = (V , F ) be a hypergraph. A path in F from vertex v to
vertex v′ is a sequence of k ≥ 1 edges f1, . . . , fk such that

(i) v ∈ f1;

(ii) v′ ∈ fk;

(iii) fi ∩ fi+1 �= ∅ for i ∈ [1, k − 1].

Two vertexes are connected in F if there is a path between them. The notions of connected
pair of edges, connected component, and connected hypergraph are now defined in the
usual manner.

Now let F = (V , F ) be a hypergraph, and U ⊆ V . The restriction of F to U , denoted
F |U , is the result of forming the reduction of (U, {f ∩ U | f ∈ F } − {∅}).
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Let F = (V , F ) be a reduced hypergraph, let f, f ′ be distinct edges, and let g =
f ∩ f ′. Then g is an articulation set ofF if the number of connected components ofF |V−g

is greater than the number of connected components of F . (This generalizes the notion of
articulation point for ordinary graphs.)

Finally, a reduced hypergraph F = (V , F ) is acyclic if for each U ⊆ V , if F |U is
connected and has more than one edge then it has an articulation set; it is cyclic otherwise.
A hypergraph is acyclic if its reduction is.

Note that if F = (V , F ) is an acyclic hypergraph, then so is F |U for each U ⊆ V .

Property (5): The hypergraph corresponding to R is acyclic.

We now present the theorem stating the equivalence of these five properties. Addi-
tional equivalent properties are presented in Exercise 6.31 and in Chapter 8, where the
relationship of acyclicity with dependencies is explored.

Theorem 6.4.5 Properties (1) through (5) are equivalent.

Proof We sketch here arguments that (4)⇒ (2)⇒ (1)⇒ (5)⇒ (4). The equivalence of
(3) and (4) is left as Exercise 6.30(a).

We assume in this proof that the hypergraphs considered are connected; generalization
to the disconnected case is straightforward.

(4)⇒ (2): Suppose now that the output of the GYO algorithm on R = {R1, . . . , Rn} is
empty. Let S1, . . . , Sn be an ordering of R corresponding to a sequence of ear removals
stemming from an execution of the GYO algorithm, and let Ti be a witness for Si for
i ∈ [1, n − 1]. An induction on n (“from the inside out”) shows that the following is a
full reducer (see Exercise 6.30a):

T1 := T1 �< S1;
T2 := T2 �< S2;

...
Tn−1 := Tn−1 �< Sn−1;
Sn−1 := Sn−1 �< Tn−1;

...
S2 := S2 �< T2;
S1 := S1 �< T1;

(2)⇒ (1): Suppose that R has a full reducer, and let I be a pairwise consistent instance
of R. Application of the full reducer to I yields an instance I′ that is globally consistent.
But by pairwise consistency, each step of the full reducer leaves I unchanged. It follows
that I = I′ is globally consistent.

(1) ⇒ (5): This is proved by contradiction. Suppose that there is a hypergraph that
satisfies Property (1) but violates the definition of acyclic. Let R = {R1, . . . , Rn} be such a
hypergraph where n is minimal among such hypergraphs and where the size of U = ∪R is
minimal among such hypergraphs with n edges.
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I A1 A2 . . . Ap B1 . . . Bq

1 0 . . . 0 1 . . . 1

0 1 . . . 0 2 . . . 2
...

...
...

...
...

...
...

0 0 . . . 1 p . . . p

Figure 6.13: Instance for proof of Theorem 6.4.5

It follows easily from the minimality conditions that R is reduced. In addition, by
minimality no vertex (attribute) in U is in only one edge (relation schema).

Consider now the schema R′ = {R2 − R1, . . . , Rn − R1}. Two cases arise:

Case 1: R′ is connected. Suppose that R1 = {A1, . . . , Ap} and U − R1 = {B1 . . . , Bq}.
Consider the instance I over U shown in Fig. 6.13. Define I = {I1, . . . , In} so that

Ij = πRj
(I ) for j ∈ [2, n], and

I1 = πR1(I ) ∪ {〈0, 0, . . . , 0〉}.

Using the facts that R′ is connected and that each vertex of R occurs in at least two edges,
it is straightforward to verify that I is pairwise consistent but not globally consistent, which
is a contradiction (see Exercise 6.30b).

Case 2: R′ is not connected. Choose a connected component of R′ and let {S1, . . . , Sk} be
the set of edges of R− {R1} involved in that connected component. Let S = ∪k

i=1Si and let
R′1 = R1 ∩ S. Two subcases arise:

Subcase 2.a: R′1 ⊆ Sj for some j ∈ [1, k]. If this holds, then R′1 ∩ Sj is an articulation
set for R, which is a contradiction (see Exercise 6.30b).

Subcase 2.b: R′1 �⊆ Sj for each j ∈ [1, k]. In this case R′′ = {S1, . . . , Sk, R
′
1} is a reduced

hypergraph with fewer edges than R. In addition, it can be verified that this hypergraph
satisfies Property (1) (see Exercise 6.30b). By minimality of n, this implies that R′′ is
acyclic. Because it is connected and has at least two edges, it has an articulation set. Two
nested subcases arise:

Subcase 2.b.i: Si ∩ Sj is an articulation pair for some i, j . We argue in this case that
Si ∩ Sj is an articulation pair for R. To see this, let x ∈ R′1− (Si ∩ Sj) and let y be a vertex
in some other component of R′′|S−{Si∩Sj }. Suppose that Ri1, . . . , Ril is a path in R from
y to x. Let Rip be the first edge in this path that is not in {S1, . . . , Sk}. By the choice of
{S1, . . . , Sk}, Rip = R1. It follows that there is a path from y to x in R′′|S−{Si∩Sj }, which
is a contradiction. We conclude that R has an articulation pair, contradicting the initial
assumption in this proof.

Subcase 2.b.ii: R′1 ∩ Si is an articulation pair for some i. In this case R1 ∩ Si is an
articulation pair for R (see Exercise 6.30b), again yielding a contradiction to the initial
assumption of the proof.
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(5) ⇒ (4): We first show inductively that each connected reduced acyclic hypergraph
F with at least two edges has at least two ears. For the case in which F has two edges, this
result is immediate. Suppose now thatF = (V , F ) is connected, reduced, and acyclic, with
|F |> 2. Let h= f ∩ f ′ be an articulation set of F . Let G be a connected component of
F |V−h. By the inductive hypothesis, this has at least two ears. Let g be an ear of G that is
different from f − h and different from f ′ − h. Let g′ be an edge ofF such that g = g′ − h.
It is easily verified that g′ is an ear of F (see Exercise 6.30b). Because F |V−h has more
than two connected components, it follows that F has at least two ears.

Finally, suppose that F = (V , F ) is acyclic. If there is only one edge, then the GYO
algorithm yields the empty hypergraph. Suppose that it has more than one edge. If F is
not reduced, the GYO algorithm can be applied to reduce it. If F is reduced, then by the
preceding argument F has an ear, say f . Then a step of the algorithm can be applied to
yield F |∪(F−{f }). This is again acyclic. An easy induction now yields the result.

Recall from Theorem 6.4.2 that computing projections of arbitrary joins is probably
intractable if both query and data size are considered. The following shows that this is not
the case when the join is acyclic.

Corollary 6.4.6 If R is acyclic, then for each instance I over R, the expression
πX(��I) can be computed in time polynomial in the size of IR, the input, and the output.

Proof Because the computation for each connected component of R can be performed
separately, we assume without loss of generality that R is connected. Let R=(R1, . . . , Rn)

and I = (I1, . . . , In). First apply a full reducer to I to obtain I′ = (I ′1, . . . , I
′
n). This takes

time polynomial in the size of the query and the input; the result is globally consistent; and
�� II= �� II′.

Because R is acyclic, by Theorem 6.4.5 there is a join tree T for R. Choose a root
for T , say R1. For each subtree Tk of T with root Rk �= R1, let Xk =X ∩ (∪{R | R ∈ Tk}),
and Zk = Rk∩ (the parent of Rk). Let Jk = I ′k for k ∈ [1, n]. Inductively remove nodes Rk

and replace instances Jk from leaf to root of T as follows: Delete node Rk with parent Rm

by replacing Jm with Jm �� πXkZk
Jk. A straightforward induction shows that immediately

before nonleaf node Rk is deleted, then Jk = πXkRk
(��Rl∈Tk I ′l ). It follows that at the end

of this process the answer is πXJ1 and that at each intermediate stage each instance Jk has
size bounded by |I ′k| · |πX(��IIk)| (see Exercise 6.33).
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database queries in [CM77], including the Homomorphism Theorem (Theorem 6.2.3) and
Theorem 6.2.6. Theorem 6.2.10 is also due to [CM77]; the proofs sketched in the exercises
are due to [SY80] and [ASU79b]. Refinements of this result (e.g., to subclasses of typed
tableau queries) are presented in [ASU79b, ASU79a].

The notion of tableau homomorphism is a special case of the notion of subsumption
used in resolution theorem proving [CL73]. That work focuses on clauses (i.e., disjunctions
of positive and negative literals), and permits function symbols. A clause C = (L1 ∨ · · · ∨
Ln) subsumes a clause D = (M1 ∨ · · · ∨Mk) if there is a substitution σ such that Cσ

is a subclause of D. A generalized version of tableau minimization, called condensation,
also arises in this connection. A condensation of a clause C = (L1 ∨ · · · ∨ Ln) is a clause
C′ = (Li1 ∨ · · · ∨ Lim) with m minimal such that C′ = Cθ for some substitution θ . As
observed in [Joy76], condensations are unique up to variable substitution.

Reference [SY80] studies restricted usage of difference with SPCU queries, for which
several positive results can be obtained (e.g., decidability of containment; see Exer-
cise 6.22).

The undecidability results for the relational calculus derive from results in [DiP69]
(see also [Var81]). The assumption in this chapter that relations be finite is essential. For
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instance, the test for containment is co-r.e. in our context whereas it is r.e. when possibly
infinite structures are considered. (This is by reduction to the validity of a formula in first-
order predicate logic with equality using the Gödel Completeness Theorem.

The complexity of query languages is studied in [CH82, Var82a] and is considered in
Part E of this volume.

As discussed in Chapter 7, practical query languages typically produce bags (also
called multisets; i.e., collections whose members may occur more than once). The problem
of containment and equivalence of conjunctive queries under the bag semantics is consid-
ered in [CV93]. It remains open whether containment is decidable, but it is D

p

2 -hard. On
the other hand, two conjunctive queries are equivalent under the bag semantics iff they are
isomorphic.

Acyclic joins enjoyed a flurry of activity in the database research community in the
late 1970s and early 1980s. As noted in [Mal86], the same concept has been studied
in the field of statistics, beginning with [Goo70, Hab70]. An early motivation for their
study in databases stemmed from distributed query processing; the notions of join tree
and full reducers are from [BC81, BG81]; see also [GS82, GS84, SS86]. The original
GYO algorithm was developed in [YO79] and [Gra79]; we use here a variant due to
[FMU82]. The notion of globally consistent is studied in [BR80, HLY80, Ris82, Var82b];
see also [Hul83]. Example 6.4.1 is taken from [Ull89b]. The paper [BFM+81] intro-
duced the notion of acyclicity presented here and observed the equivalence to acyclicity
of several previously studied properties, including those of having a full reducer and pair-
wise consistency implying global consistency; this work is reported in journal form in
[BFMY83].

A linear-time test for acyclicity is developed in [TY84]. Theorem 6.4.2 and Corol-
lary 6.4.6 are due to [Yan81].

The notion of Berge acyclic is due to [Ber76a]. [Fag83] investigates several notions
of acyclicity, including the notion studied in this chapter and Berge acyclicity. Further
investigation of these alternative notions of acyclicity is presented in [ADM85, DM86b,
GR86]. Early attempts to develop a notion of acyclic that captured desirable database
characteristics include [Zan76, Gra79].

The relationship of acyclicity with dependencies is considered in Chapter 8.
Many variations of the universal relation assumption arose in the late 1970s and early

1980s. We return to this topic in Chapter 11; surveys of these notions include [AP82,
Ull82a, MRW86].

Exercises

Exercise 6.1

(a) Give detailed definitions for the rewrite rules proposed in Section 6.1. In other words,
provide the conditions under which they preserve equivalence.

(b) Give the step-by-step description of how the query tree of Fig. 6.1(a) can be trans-
formed into the query tree of Fig. 6.1(b) using these rewrite rules.
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Exercise 6.2 Consider the transformation σF(q1 ��G q2)→ σF(q1) ��G q2 of Fig. 6.2. De-
scribe a query q and database instance for which applying this transformation yields a query
whose direct implementation is dramatically more expensive than that of q.

Exercise 6.3

(a) Write generalized SPC queries equivalent to the two tableau queries of Exam-
ple 6.2.2.

(b) Show that the optimization of this example cannot be achieved using the rewrite rules
or multiway join techniques of System/R or INGRES discussed in Section 6.1.

(c) Generate an example analogous to that of Example 6.2.2 that shows that even for
typed tableau queries, the rewrite rules of Section 6.1 cannot achieve the optimiza-
tions of the Homomorphism Theorem.

Exercise 6.4 Present an algorithm that identifies when variables can be projected out during
a left-to-right join of a sip strategy.

Exercise 6.5 Describe a generalization of sip strategies that permits evaluation of multiway
joins according to an arbitrary binary tree rather than using only left-to-right join processing.
Give an example in which this yields an evaluation plan more efficient than any left-to-right
join.

Exercise 6.6 Consider query expressions that have the form (†) mentioned in the discussion
of join detachment in Section 6.1.

(a) Describe how the possibility of applying join detachment depends on how equali-
ties are expressed in the conditions (e.g., Is there a difference between using con-
ditions ‘x.1= y.1, y.1= z.1’ versus ‘x.1= z.1, z.1= y.1’?). Describe a technique
for eliminating this dependence.

(b) Develop a generalization of join detachment in which a set of variables serves as the
pivot.

Exercise 6.7 [WY76]

(a) Describe some heuristics for choosing the atom Ri(si) for forming a tuple substitu-
tion. These may be in the context of using tuple substitution and join detachment for
the resulting subqueries, or they may be in a more general context.

(b) Develop a query optimization algorithm based on applying single-variable condi-
tions, join detachment, and tuple substitution.

Exercise 6.8 Prove Corollary 6.2.4.

Exercise 6.9

(a) State the direct generalization of Theorem 6.2.3 for tableau queries with equality,
and show that it does not hold.

(b) State and prove a correct generalization of Theorem 6.2.3 that handles tableau
queries with equality.

Exercise 6.10 For queries q, q ′, write q ⊂ q ′ to denote that q ⊆ q ′ and q �≡ q ′. The meaning
of q ⊃ q ′ is defined analogously.
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(a) Exhibit an infinite set {q0, q1, q2, . . .} of typed tableau queries involving no constants
over a single relation with the property that q0 ⊂ q1 ⊂ q2 ⊂ . . . .

(b) Exhibit an infinite set {q ′0, q ′1, q ′2, . . .} of (possibly nontyped) tableau queries involv-
ing no constants over a single relation such that q ′i �⊆ q ′j and q ′j �⊆ q ′i for each pair
i �= j .

(c) Exhibit an infinite set {q ′′0 , q ′′1 , q ′′2 , . . .} of (possibly nontyped) tableau queries involv-
ing no constants over a single relation with the property that q ′′0 ⊃ q ′′1 ⊃ q ′′2 ⊃ . . . .

(d) Do parts (b) and (c) for typed tableau queries that may contain constants.

� (e) [FUMY83] Do parts (b) and (c) for typed tableau queries that contain no constants.

Exercise 6.11 [CM77] Prove Proposition 6.2.9.

Exercise 6.12

(a) Prove that if the underlying domain dom is finite, then only one direction of the
statement of Theorem 6.2.3 holds.

(b) Let n > 1 be arbitrary. Exhibit a pair of tableau queries q, q ′ such that under the
assumption that dom has n elements, q ⊆ q ′, but there is no homomorphism from q ′
to q. In addition, do this using typed tableau queries.

(c) Show for arbitrary n > 1 that Theorem 6.2.6 and Proposition 6.2.9 do not hold if
dom has n elements.

Exercise 6.13 Let R be a relation schema of sort ABC. For each of the following SPJR queries
over R, construct an equivalent tableau (see Exercise 4.19), minimize the tableau, and construct
from the minimized tableau an equivalent SPJR query with minimal number of joins.

(a) πAC[πAB(R) �� πBC(R)] �� πA[πAC(R) �� πCB(R)]

(b) πAC[πAB(R) �� πBC(R)] �� πAB(σB=8(R)) �� πBC(σA=5(R))

(c) πAB(σC=1(R)) �� πBC(R) �� πAB[σC=1(πAC(R)) �� πCB(R)]

♠Exercise 6.14 [SY80]

(a) Give a decision procedure for determining whether one union of tableaux query
is contained in another one. Hint: Let the queries be q = ({T1, . . . ,Tn}, u) and
q ′ = ({S1, . . . ,Sm}, v); and prove that q ⊆ q ′ iff for each i ∈ [1, n] there is some
j ∈ [1,m] such that (Ti, u)⊆ (Sj , v). (The case of queries equivalent to q∅ must be
handled separately.)

A union of tableaux query ({T1, . . . ,Tn}, u) is nonredundant if there is no distinct pair i, j such
that (Ti, u)⊆ (Tj , u).

(b) Prove that if ({T1, . . . ,Tn}, u) and ({S1, . . . ,Sm}, v) are nonredundant and equiva-
lent, then n=m; for each i ∈ [1, n] there is a j ∈ [1, n] such that (Ti, u)≡ (Sj , v);
and for each j ∈ [1, n] there is a i ∈ [1, n] such that (Sj , v)≡ (Ti, u).

(c) Prove that for each union of tableaux query q there is a unique (up to renaming)
equivalent union of tableaux query that has a minimal total number of atoms.

Exercise 6.15 Exhibit a pair of typed restricted SPJ algebra queries q1, q2 over a relation R

and having no constants, such that there is no conjunctive query equivalent to q1 ∪ q2. Hint: Use
tableau techniques.
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♠Exercise 6.16 [SY80]

(a) Complete the proof of part (a) of Theorem 6.2.10.

(b) Prove parts (b) and (c) of that theorem. Hint: Given ξ and qξ = (Tξ, t) and q ′ξ =
(T ′ξ , t) as in the proof of part (a), set q ′′ξ = (Tξ ∪ T ′ξ , t). Show that ξ is satisfiable iff
q ′′ξ ≡ q ′ξ .

(c) Prove that it is np-hard to determine, given a pair q, q ′ of typed tableau queries over
the same relation schema, whether q is minimal and equivalent to q ′. Conclude that
optimizing conjunctive queries, in the sense of finding an equivalent with minimal
number of atoms, is np-hard.

Exercise 6.17 [ASU79b] Prove Theorem 6.2.10 using a reduction from 3-SAT (see Chapter 2)
rather than from the exact cover problem.

Exercise 6.18 [ASU79b]

(a) Prove that determining containment between two typed SPJ queries of the form
πX(��ni=1(πXi

R)) is np-complete. Hint: Use Exercise 6.16.

(b) Prove that the problem of finding, given an SPJ query q of the form πX(��ni=1
(πXi

R)), an SPJ query q ′ equivalent to q that has the minimal number of join
operations among all such queries is np-hard.

Exercise 6.19

(a) Complete the proof of Theorem 6.3.1.

(b) Describe how to modify that proof so that qP uses no constants.

(c) Describe how to modify the proof so that no constants and only one ternary relation is
used. Hint: Speaking intuitively, a tuple t = 〈a1, . . . , a5〉 of ENC can be simulated as
a set of tuples {〈bt, b1, a1〉, . . . , 〈bt, b5, a5〉}, where bt is a value not used elsewhere
and b1, . . . , b5 are values established to serve as integers 1, . . . , 5.

(d) Describe how, given instance P of the PCP, to construct an nr-datalog¬ program that
is satisfiable iff P has a solution.

Exercise 6.20 This exercise develops further undecidability results for the relational calculus.

(a) Prove that containment and equivalence of range-safe calculus queries are co-r.e.

(b) Prove that domain independence of calculus queries is co-r.e. Hint: Theorem 5.6.1 is
useful here.

(c) Prove that containment of safe-range calculus queries is undecidable.

(d) Show that there is no algorithm that always halts and on input calculus query q gives
an equivalent query q ′ of minimum length. Conclude that “complete” optimization
of the relational calculus is impossible. Hint: If there were such an algorithm, then it
would map each unsatisfiable query to a query with formula (of form) ¬(a = b).

♠Exercise 6.21 [ASU79a, ASU79b] In a typed tableau query (T , u), a summary variable is
a variable occurring in u. A repeated nonsummary variable for attribute A is a nonsummary
variable in πA(T ) that occurs more than once in T . A typed tableau query is simple if for each
attribute A, there is a repeated nonsummary variable in πA(T ), then no other constant or variable
in πA(T ) occurs more than once πA(T ). Many natural typed restricted SPJ queries translate into
simple tableau queries.
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(a) Show that the tableau query over R[ABCD] corresponding to

πAC(πAB(R) �� πBC(R)) �� (πAB(R) �� πBD(R))

is not simple.

(b) Exhibit a simple tableau query that is not the result of transforming a typed restricted
SPJ query under the algorithm of Exercise 4.19.

(c) Prove that if (T , u) is simple, T ′ ⊆ T , and (T ′, u) is a tableau query, then (T ′, u) is
simple.

(d) Develop an O(n4) algorithm that, on input a simple tableau query q, produces a
minimal tableau query equivalent to q.

(e) Develop an O(n3) algorithm that, given simple tableau queries q, q ′, determines
whether q ≡ q ′.

(f) Prove that testing containment for simple tableau queries is np-complete.

♠Exercise 6.22 [SY80] Characterize containment and equivalence between queries of the form
q1 − q2, where q1, q2 are SPCU queries. Hint: First develop characterizations for the case in
which q1, q2 are SPC queries.

Exercise 6.23 Recall from Exercise 5.9 that an arbitrary nonrecursive datalog¬ rule can be
described as a difference q1 − q2, where q1 is an SPC query and q2 is an SPCU query.

(a) Show that Exercise 5.9 cannot be strengthened so that q2 is an SPC query.

(b) Show that containment between pairs of nonrecursive datalog¬ rules is decidable.
Hint: Use Exercise 6.22.

(c) Recall that for each nr-datalog program P with a single-relation target there is an
equivalent nr-datalog program P ′ such that all rule heads have the same relation name
(see Exercise 4.24). Prove that the analogous result does not hold for nr-datalog¬
programs.

Exercise 6.24

(a) Verify that I �� J = (I �< J) �� J .

(b) Analyze the transmission costs incurred by the left-hand and right-hand sides of this
equation, and describe conditions under which one is more efficient than the other.

Exercise 6.25 [HLY80] Prove that the problem of deciding, given instance I of database
schema R, whether I is globally consistent is np-complete.

Exercise 6.26 Prove the following without using Theorem 6.4.5.

(a) The database schema R = {AB,BC,CA} has no full reducer.

(b) For arbitrary n > 1, the schema {R1, . . . , Rn−1} of Example 6.4.1 has a full reducer.

(c) For arbitrary (odd or even) n > 1, the schema {R1, . . . , Rn} of Example 6.4.1 has no
full reducer.

Exercise 6.27

(a) Draw the hypergraph of the schema of Example 6.4.3.

(b) Draw the hypergraph of Fig. 6.12(b) in a fashion that suggests it to be acyclic.
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Exercise 6.28 Prove that the output of Algorithm 6.4.4 is independent of the nondeterministic
choices.

Exercise 6.29 As originally introduced, the GYO algorithm involved the following steps:

Nondeterministically perform either step,
until neither can be applied

1. If v ∈ V is in exactly one edge f ∈ F

then F := (V − {v}, (F − {f } ∪ {f − {v}})− {∅}).
2. If f ⊆ f ′ for distinct f, f ′ ∈ F ,

then F := (V , F − {f }).
The result of applying the original GYO algorithm to a schema R is the GYO reduction of R.

(a) Prove that the original GYO algorithm yields the same output independent of the
nondeterministic choices.

(b) [FMU82] Prove that Algorithm 6.4.4 given in the text yields the empty hypergraph
on R iff the GYO reduction of R is the empty hypergraph.

Exercise 6.30 This exercise completes the proof of Theorem 6.4.5.

(a) [BG81] Prove that (3)⇔ (4).

(b) Complete the other parts of the proof.

Exercise 6.31 [BFMY83] R has the running intersection property if there is an ordering
R1, . . . , Rn of R such that for 2 ≤ i ≤ n there exists ji < i such that Ri ∩ (R1 ∪ · · · ∪ Ri−1)⊆
Rji . In other words, the intersection of each Ri with the union of the previous R′js is contained
in one of these. Prove that R has the running intersection property iff R is acyclic.

Exercise 6.32 [BFMY83] A Berge cycle in a hypergraph F is a sequence (f1, v1, f2, v2, . . . ,

fn, vn, fn+1) such that

(i) v1, . . . , vn are distinct vertexes of F ;

(ii) f1, . . . , fn are distinct edges of F , and fn+1 = f1;

(iii) n≥ 2; and

(iv) vi ∈ fi ∩ fi+1 for i ∈ [1, n].

A hypergraph is Berge cyclic if it has a Berge cycle, and it is Berge acyclic otherwise.

(a) Prove that Berge acyclicity is necessary but not sufficient for acyclicity.

(b) Show that any hypergraph in which two edges have two nodes in common is Berge
cyclic.

Exercise 6.33 [Yan81] Complete the proof of Corollary 6.4.6.



7 Notes on Practical
Languages

Alice: What do you mean by practical languages?
Riccardo: select from where.

Alice: That’s it?
Vittorio: Well, there are of course lots of bells and whistles.

Sergio: But basically, this forms the core of most practical languages.

In this chapter we discuss the relationship of the abstract query languages discussed
so far to three representative commercial relational query languages: Structured Query

Language (SQL), Query-By-Example (QBE), and Microsoft Access. SQL is by far the
dominant relational query language and provides the basis for languages in extensions of
the relational model as well. Although QBE is less widespread, it illustrates nicely the
basic capabilities and problems of graphic query languages. Access is a popular database
management system for personal computers (PCs) and uses many elements of QBE.

Our discussion of the practical languages is not intended to provide a complete de-
scription of them, but rather to indicate some of the similarities and differences between
theory and practice. We focus here on the central aspects of these languages. Many fea-
tures, such as string-comparison operators, iteration, and embeddings into a host language,
are not mentioned or are touched on only briefly.

We first present highlights of the three languages and then discuss considerations that
arise from their use in the real world.

7.1 SQL: The Structured Query Language

SQL has emerged as the preeminent query language for mainframe and client-server rela-
tional dbms’s. This language combines the flavors of both the algebra and the calculus and
is well suited for the specification of conjunctive queries.

This section begins by describing how conjunctive queries are expressed using SQL.
We then progress to additional features, including nested queries and various forms of
negation.

Conjunctive Queries in SQL

Although there are numerous variants of SQL, it has become the standard for relational
query languages and indeed for most aspects of relational database access, including data
definition, data modification, and view definition. SQL was originally developed under the

142
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name Sequel at the IBM San Jose Research Laboratory. It is currently supported by most
of the dominant mainframe commercial relational systems, and increasingly by relational
dbms’s for PCs.

The basic building block of SQL queries is the select-from-where clause. Speaking
loosely, these have the form

select <list of fields to select>
from <list of relation names>
where <condition>

For example, queries (4.1) and (4.4) of Chapter 4 are expressed by

select Director
from Movies
where Title = ‘Cries and Whispers’;

select Location.Theater, Address
from Movies, Location, Pariscope
where Director = ‘Bergman’

and Movies.Title = Pariscope.Title
and Pariscope.Theater = Location.Theater;

In these queries, relation names themselves are used to denote variables ranging over
tuples occurring in the corresponding relation. For example, in the preceding queries, the
identifier Movies can be viewed as ranging over tuples in relation Movies. Relation name
and attribute name pairs, such as Location.Theater, are used to refer to tuple components;
and the relation name can be dropped if the attribute occurs in only one of the relations in
the from clause.

The select keyword has the effect of the relational algebra projection operator, the
from keyword has the effect of the cross-product operator, and the where keyword has the
effect of the selection operator (see Exercise 7.3). For example, the second query translates
to (using abbreviated attribute names)

πL.T h,A( σD=‘Bergman’∧M.T i=P.T i∧P.T h=L.T h(Movies× Location× Pariscope)).

If all of the attributes mentioned in the from clause are to be output, then * can be used
in place of an attribute list in the select clause. In general, the where condition may include
conjunction, disjunction, negation, and (as will be seen shortly) nesting of select-from-
where blocks. If the where clause is omitted, then it is viewed as having value true for all
tuples of the cross-product. In implementations, as suggested in Chapter 6, optimizations
will be used; for example, the from and where clauses will typically be merged to have the
effect of an equi-join operator.

In SQL, as with most practical languages, duplicates may occur in a query answer.
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Technically, then, the output of an SQL query may be a bag (also called “multiset”)—
a collection whose members may occur more than once. This is a pragmatic compromise
with the pure relational model because duplicate removal is rather expensive. The user may
request that duplicates be removed by inserting the keyword distinct after the keyword
select.

If more than one variable ranging over the same relation is needed, then variables can
be introduced in the from clause. For example, query (4.7), which asks for pairs of persons
such that the first directed the second and the second directed the first, can be expressed as

select M1.Director,M1.Actor
from Movies M1,Movies M2
where M1.Director =M2.Actor

and M1.Actor =M2.Director;

In the preceding example, the Director coordinate of M1 is compared with the Actor
coordinate of M2. This is permitted because both coordinates are (presumably) of type
character string. Relations are declared in SQL by specifying a relation name, the attribute
names, and the scalar types associated with them. For example, the schema for Movies
might be declared as

create table Movies
(Title character[60]
Director character[30]
Actor character[30]);

In this case, Title and Director values would be comparable, even though they are character
strings of different lengths. Other scalar types supported in SQL include integer, small
integer, float, and date.

Although the select-from-where block of SQL has a syntactic flavor close to the re-
lational calculus (but using tuple variables rather than domain variables), from a technical
perspective the SQL semantics are firmly rooted in the algebra, as illustrated by the follow-
ing example.

Example 7.1.1 Let {R[A], S[B], T [C]} be a database schema, and consider the follow-
ing query:

select A

from R, S, T

where R.A= S.B or R.A= T .C;

A direct translation of this into the SPJR algebra extended to permit disjunction in selection
formulas (see Exercise 4.22) yields
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πA(σA=B∨A=C(R × S × T )),

which yields the empty answer if S is empty or if T is empty. Thus the foregoing SQL
query is not equivalent to the calculus query:

{x | R(x) ∧ (S(x) ∨ T (x))}.

A correct translation into the conjunctive calculus (with disjunction) query is

{w | ∃x, y, z(R(x) ∧ S(y) ∧ T (z) ∧ x = w ∧ (x = y ∨ x = z))}.

Adding Set Operators

The select-from-where blocks of SQL can be combined in a variety of ways. We describe
first the incorporation of the set operators (union, intersect, and difference). For example,
the query

(4.14) List all actors and director of the movie “Apocalypse Now.”

can be expressed as

(select Actor Participant
from Movies
where Title = ‘Apocalypse Now’)
union
(select Director Participant
from Movies
where Title = ‘Apocalypse Now’);

In the first subquery the output relation uses attribute Participant in place of Actor. This
illustrates renaming of attributes, analogous to relation variable renaming. This is needed
here so that the two relations that are unioned have compatible sort.

Although union, intersect, and difference were all included in the original SQL, only
union is in the current SQL2 standard developed by the American National Standards
Institute (ANSI). The two left out can be simulated by other mechanisms, as will be seen
later in this chapter.

SQL also includes a keyword contains, which can be used in a selection condition to
test containment between the output of two nested select-from-where expressions.

Nested SQL Queries

Nesting permits the use of one SQL query within the where clause of another. A simple
illustration of nesting is given by this alternative formulation of query (4.4):
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select Theater
from Pariscope
where Title in

(select Title
from Movies
where Director = ‘Bergman’);

The preceding example tests membership of a unary tuple in a unary relation. The
keyword in can also be used to test membership for arbitrary arities. The symbols < and
> are used to construct tuples from attribute expressions. In addition, because negation is
permitted in the where clause, set difference can be expressed. Consider the query

List title and theater for movies being shown in only one theater.

This can be expressed in SQL by

select Title, Theater
from Pariscope
where 〈Title, Theater〉 not in

(select P1.Title, P1.Theater
from Pariscope P1, Pariscope P2
where P1.Title = P2.Title

and not (P1.Theater = P2.Theater));

Expressing First-Order Queries in SQL

We now discuss the important result that SQL is relationally “complete,” in the sense that
it can express all relational queries expressible in the calculus. Recall from Chapter 5 that
the family of nr-datalog¬ programs is equivalent to the calculus and algebra. We shall show
how to simulate nr-datalog¬ using SQL. Intuitively, the result follows from the facts that

(a) each rule can be simulated using the select-from-where construct;

(b) multiple rules defining the same predicate can be simulated using union; and

(c) negation in rule bodies can be simulated using not in.

We present an example here and leave the formal proof for Exercise 7.4.

Example 7.1.2 Consider the following query against the CINEMA database:

Find the theaters showing every movie directed by Hitchcock.

An nr-datalog¬ program expressing the query is
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Pariscope′(xth, xtitle)← Pariscope(xth, xtitle, xsch)

Bad_th(xth) ←Movies(xtitle,Hitchcock, xact),

Location(xth, xloc, xph),

¬Pariscope′(xth, xtitle)

Answer(xth) ← Location(xth, xloc, xph),¬Bad_th(xth).

In the program, Bad_th holds the list of “bad” theaters, for which one can find a movie by
Hitchcock that the theater is not showing. The last rule takes the complement of Bad_th
with respect to the list of theaters provided by Location.

An SQL query expressing an nr-datalog¬ program such as this one can be constructed
in two steps. The first is to write SQL queries for each rule separately. In this example, we
have

Pariscope′: select Theater, Title
from Pariscope;

Bad_th: select Theater
from Movies, Location
where Director = ‘Hitchcock’

and 〈Theater, Title〉 not in
(select *
from Pariscope′);

Answer: select Theater
from Location
where Theater not in

(select *
from Bad_th);

The second step is to combine the queries. In general, this involves replacing nested
queries by their definitions, starting from the answer relation and working backward. In
this example, we have

select Theater
from Location
where Theater not in

(select Theater
from Movies, Location
where Director = ‘Hitchcock’

and 〈Theater, Title〉 not in
(select Theater, Title
from Pariscope));

In this example, each idb (see Section 4.3) relation that occurs in a rule body occurs
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negatively. As a result, all variables that occur in the rule are bound by edb relations, and
so the from part of the (possibly nested) query corresponding to the rule refers only to
edb relations. In general, however, variables in rule bodies might be bound by positively
occurring idb relations, which cannot be used in any from clause in the final SQL query.
To resolve this problem, the nr-datalog¬ program should be rewritten so that all positively
occurring relations in rule bodies are edb relations (see Exercise 7.4a).

View Creation and Updates

We conclude our consideration of SQL by noting that it supports both view creation and
updates.

SQL includes an explicit mechanism for view creation. The relation Champo-info from
Example 4.3.4 is created in SQL by

create view Le Champo as
select Pariscope.Title, Schedule, Phone
from Pariscope, Location
where Pariscope.Theater = ‘Le Champo’

and Location.Theater = ‘Le Champo.’

Views in SQL can be accessed as can normal relations and are useful in building up
complex queries.

As a practical database language, SQL provides commands for updating the database.
We briefly illustrate these here; some theoretical aspects concerning updates are presented
in Chapter 22.

SQL provides three primitive commands for modifying the contents of a database—
insert, delete, and update (in the sense of modifying individual tuples of a relation).

The following can be used to insert a new tuple into the Movies database:

insert into Movies
values (‘Apocalypse Now,’ ‘Coppola,’ ‘Duvall’);

A set of tuples can be deleted simultaneously:

delete Movies
where Director = ‘Hitchcock’;

Tuple update can also operate on sets of tuples (as illustrated by the following) that
might be used to correct a typographical error:

update Movies
set Director = ‘Hitchcock’
where Director = ‘Hickcook’;
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The ability to insert and delete tuples provides an alternative approach to demon-
strating the relational completeness of SQL. In particular, subexpressions of an algebra
expression can be computed in intermediate, temporary relations (see Exercise 7.6). This
approach does not allow the same degree optimization as the one based on views because
the SQL interpreter is required to materialize each of the intermediate relations.

7.2 Query-by-Example and Microsoft Access

We now turn to two query languages that have a more visual presentation. The first, Query-
by-Example (QBE), presents a visual display for expressing conjunctive queries that is
close to the perspective of tableau queries. The second language, Access, is available on
personal computers; it uses elements of QBE, but with a more graphical presentation of
join relationships.

QBE

The language Query-By-Example (QBE) was originally developed at the IBM T. J. Watson
Research Center and is currently supported as part of IBM’s Query Management Facility.
As illustrated at the beginning of Chapter 4, the basic format of QBE queries is fundamen-
tally two-dimensional and visually close to the tableau queries. Importantly, a variety of
features are incorporated into QBE to give more expressive power than the tableau queries
and to provide data manipulation capabilities. We now indicate some features that can be
incorporated into a QBE-like visual framework. The semantics presented here are a slight
variation of the semantics supported for QBE in IBM’s product line.

As seen in Fig. 4.2, which expresses query (4.4), QBE uses strings with prefix _ to
denote variables and other strings to denote constants. If the string is preceded by P., then
the associated coordinate value forms part of the query output. QBE framework can provide
a partial union capability by permitting the inclusion in a query of multiple tuples having a
P. prefix in a single relation. For example, Fig. 7.1 expresses the query

(4.12) What films with Allen as actor or director are currently featured at the Concorde?

Under one natural semantics for QBE queries, which parallels the semantics of conjunctive
queries and of SQL, this query will yield the empty answer if either σDirector=“Allen”Movies
or σActor=“Allen”Movies is empty (see Example 7.1.1).

QBE also includes a capability of condition boxes, which can be viewed as an exten-
sion of the incorporation of equality atoms into tableau queries.

QBE does not provide a mechanism analogous to SQL for nesting of queries. It is hard
to develop an appropriate visual representation of such nesting within the QBE framework,
in part due to the lack of scoping rules. More recent extensions of QBE address this issue
by incorporating, for example, hierarchical windows. QBE also provides mechanisms for
both view definition and database update.

Negation can be incorporated into QBE queries in a variety of ways. The use of data-
base update is an obvious mechanism, although not especially efficient. Two restricted
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Movies Title Director Actor

_X
_Y

Allen
Allen

Pariscope Title Schedule

P._X
P._Y

Theater

Concorde
Concorde

Figure 7.1: One form of union in QBE

Movies Title Director Actor

_Z Bergman

Pariscope Title Schedule

_Z

Theater

P._champio ¬Concorde

¬

Figure 7.2: A query with negation in QBE

forms of negation are illustrated in Fig. 7.2, which expresses the following query: (assum-
ing that each film has only one director) what theaters, other than the Concorde, feature a
film not directed by Bergman? The ¬ in the Pariscope relation restricts attention to those
tuples with Theater coordinate not equal to Concorde, and the ¬ preceding the tuple in the
Movies relation is analogous to a negative literal in a datalog rule and captures a limited
form of ¬∃ from the calculus; in this case it excludes all films directed by Bergman. When
such negation is used, it is required that all variables that occur in a row preceded by ¬ also
appear in positive rows. Other restricted forms of negation in QBE include using negative
literals in condition boxes and supporting an operator analogous to relational division (as
defined in Exercise 5.8).

The following example shows more generally how view definition can be used to
obtain relational completeness.

Example 7.2.1 Recall the query and nr-datalog¬ program of Example 7.1.2. As with
SQL, the QBE query corresponding to an nr-datalog¬ will involve one or more views for
each rule (see Exercise 7.5). For this example, however, it turns out that we can compute
the effect of the first two rules with a single QBE query. Thus the two stages of the full
query are shown in Fig. 7.3, where the symbol I. indicates that the associated tuples are
to be inserted into the answer. The creation of the view Bad_th is accomplished using the



7.2 Query-by-Example and Microsoft Access 151

Movies Title Director Actor

_xtitle Hitchcock

Pariscope Title Schedule

_xtitle

Theater

_xth

Location Theater Address Phone

_xth

¬

I.VIEW Bad_th I. Theater

_xthI.

Stage I:

Location Theater Address Phone

_xth

Stage II:

Answer Theater

_xthI.
Bad_th Theater

_xth¬

Figure 7.3: Illustration of relational completeness of QBE

expression I.VIEWBad_th I., which both creates the view and establishes the attribute
names for the view relation.

Microsoft Access: A Query Language for PCs

A number of dbms’s for personal computers have become available over the past few years,
such as DBASE IV, Microsoft Access, Foxpro, and Paradox. Several of these support a
version of SQL and a more visual query language. The visual languages have a flavor
somewhat different from QBE. We illustrate this here by presenting an example of a query
from the Microsoft Access dbm’s.

Access provides an elegant graphical mechanism for constructing conjunctive queries.
This includes a tabular display to indicate the form and content of desired output tuples,
the use of single-attribute conditions within this display (in the rows named “Criteria” and
“or”), and a graphical presentation of join relationships that are to hold between relations
used to form the output. Fig. 7.4 shows how query (4.4) can be expressed using Access.
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SelectQuery: Query4

Movies
Title
Director
Actor

Pariscope
Theater
Title
Schedule

Field

Table

Sort

Show

Criteria

Or

Theater

Location

Address

Location

Director

Movies

“Bergman”

Location
Theater
Address
Phone

Figure 7.4: Example query in Access

(Although not shown in the figure, join conditions can also be expressed using single-
attribute conditions represented as text.)

Limited forms of negation and union can be incorporated into the condition part of an
Access query. For more general forms of negation and union, however, the technique of
building views to serve as intermediate relations can be used.

7.3 Confronting the Real World

Because they are to be used in practical situations, the languages presented in this chapter
incorporate a number of features not included in their formal counterparts. In this section
we touch on some of these extensions and on fundamental issues raised by them. These in-
clude domain independence, the implications of incorporating many-sorted atomic objects,
the use of arithmetic, and the incorporation of aggregate operators.

Queries from all of the practical languages described in this chapter are domain inde-
pendent. This is easily verified from the form of queries in these languages: Whenever a
variable is introduced, the relation it ranges over is also specified. Furthermore, the specific
semantics associated with or’s occurring in where clauses (see Example 7.1.1) prevent the
kind of safety problem illustrated by query unsafe-2 of Section 5.3.

Most practical languages permit the underlying domain of values to be many-sorted—
for example, including distinct scalar domains for the types integer, real, character string,
etc., and some constructed types, such as date, in some languages. (More recent systems,
such as POSTGRES, permit the user to incorporate abstract data types as well.) For most
of the theoretical treatment, we assumed that there was one underlying domain of values,
dom, which was shared equally by all relational attributes. As noted in the discussion of
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SQL, the typing of attributes can be used to ensure that comparisons make sense, in that
they compare values of comparable type. Much of the theory developed here for a single
underlying domain can be generalized to the case of a many-sorted underlying domain (see
Exercise 7.8).

Another fundamental feature of practical query languages is that they offer value
comparators other than equality. Typically most of the base sorts are totally ordered. This
is the case for the integers or the strings (under the lexicographical ordering). It is therefore
natural to introduce ≤,≥, <,> as comparators. For example, to ask the query, “What can
we see at the Le Champo after 21:00,” we can use

ans(xt)← Pariscope(“Le Champo,”xt, xs), xs > “21:00”;

and, in the algebra, as

πTitle(σTheater=“Le Champo”∧Schedule>“21:00”Pariscope).

Exercise 4.30 explores the impact of incorporating comparators into the conjunctive
queries. Many languages also incorporate string-comparison operators.

Given the presence of integers and reals, it is natural to incorporate arithmetic oper-
ators. This yields a fundamental increase in expressive power: Even simple counting is
beyond the power of the calculus (see Exercise 5.34).

Another extension concerns the incorporation of aggregate operators into the practical
languages (see Section 5.5). Consider, for example, the query, “How many films did
Hitchcock direct?”. In SQL, this can be expressed using the query

select count(distinct Title)
from Movies
where Director = ‘Hitchcock’;

(The keyword distinct is needed here, because otherwise SQL will not remove duplicates
from the projection onto Title.) Other aggregate operators typically supported in practical
languages include sum, average, minimum, and maximum.

In the preceding example, the aggregate operator was applied to an entire relation.
By using the group by command, aggregate operators can be applied to clusters of tuples,
each common values on a specified set of attributes. For example, the following SQL query
determines the number of movies directed by each director:

select Director, count(distinct Title)
from Movies
group by Director;

The semantics of group by in SQL are most easily understood when we study an extension
of the relational model, called the complex object (or nested relation) model, which models
grouping in a natural fashion (see Chapter 20).
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Exercises

Exercise 7.1 Write SQL, QBE, and Access queries expressing queries (4.1 to 4.14) from
Chapter 4. Start by expressing them as nr-datalog¬ programs.

Exercise 7.2 Consider again the queries (5.2 and 5.3) of Chapter 5. Express these in SQL,
QBE, and Access.

Exercise 7.3 Describe formally the mapping of SQL select-from-where blocks into the SPJR
algebra.

♠Exercise 7.4

(a) Let P be an nr-datalog¬ program. Describe how to construct an equivalent program
P ′ such that each predicate that occurs positively in a rule body is an edb predicate.

(b) Develop a formal proof that SQL can simulate nr-datalog¬.

Exercise 7.5 Following Example 7.2.1, show that QBE is relationally complete.

Exercise 7.6

(a) Assuming that R and S have compatible sorts, show how to compute in SQL the
value of R − S into the relation T using insert and delete.

(b) Generalize this to show that SQL is relationally complete.
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Exercise 7.7 In a manner analogous to Exercise 7.6, show that Access is relationally complete.

�Exercise 7.8 The intuition behind the typed restricted PSJ algebra is that each attribute has a
distinct type whose elements are incomparable with the types of other attributes. As motivated
by the practical query languages, propose and study a restriction of the SPJR algebra analo-
gous to the typed restricted PSJ algebra, but permitting more than one attribute with the same
type. Does the equivalence of the various versions of the conjunctive queries still hold? Can
Exercise 6.21 be generalized to this framework?




