
Foundations of Databases





Foundations of

Databases

Serge Abiteboul
INRIA–Rocquencourt

Richard Hull
University of Southern California

Victor Vianu
University of California–San Diego

Addison-Wesley Publishing Company

Reading, Massachusetts . Menlo Park, California
New York . Don Mills, Ontario . Wokingham, England
Amsterdam . Bonn . Sydney . Singapore
Tokyo . Madrid . San Juan . Milan . Paris



Sponsoring Editor: Lynne Doran Cote
Associate Editor: Katherine Harutunian
Senior Production Editor: Helen M. Wythe
Cover Designer: Eileen R. Hoff
Manufacturing Coordinator: Evelyn M. Beaton
Cover Illustrator: Toni St. Regis
Production: Superscript Editorial Production Services (Ann Knight)
Composition: Windfall Software (Paul C. Anagnostopoulos, Marsha Finley,

Jacqueline Scarlott), using ZzTEX
Copy Editor: Patricia M. Daly
Proofreader: Cecilia Thurlow

The procedures and applications presented in this book have been included for
their instructional value. They have been tested with care but are not guaranteed
for any purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs and applications.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Abiteboul, S. (Serge)

Foundations of databases / Serge Abiteboul.
Richard Hull, Victor Vianu.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-53771-0
1. Database management. I. Hull, Richard, 1953–. II. Vianu,

Victor. III. Title.
QA76.9.D3A26 1995
005.74’01—dc20 94-19295

CIP

Copyright © 1995 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of the publisher. Printed in the United States of America.

1 2 3 4 5 6 7 8 9 10–MA–98 97 96 95 94



Alice: To whom are you going to dedicate the book?
Vittorio: How about our parents?

Riccardo: Yes, and our spouses . . .
Sergio: . . . and the kids . . .

Alice: Hold it, that’s a dozen people already! Don’t you guys have some
common ancestor?!

All: You’re right! We also dedicate it to Seymour Ginsburg.





Preface

Database theory is a relative newcomer to the field of computer science. Early data man-
agement systems were based on techniques from several classical areas of computer

science, ranging from hardware and operating systems to data structures and programming
languages. In the early seventies, a leap of abstraction from file systems produced relational
databases and its accompanying theory, with logic as the catalyst. We believe that database
theory has matured—that it has emerged as an elegant and robust part of science with its
own identity. As such, it embodies its own peculiar brand of wisdom that deserves to be
communicated not just to insiders, but to the computer science community at large.

In a nutshell, a database management system is a software system that enables the
creation, maintenance, and use of large amounts of data. In contrast with many program-
ming applications, the logical data structure—the “database schema”—used to structure a
given data set is usually much smaller than the volume of that set. Furthermore, the data is
persistent, evolving over time and surviving multiple invocations of the database manage-
ment software. To increase usability, concurrent access to the data is usually supported with
specialized protocols that guarantee a form of noninterference between interleaved trans-
actions. Importantly, modern database management systems embody a distinction between
the logical level and the physical level. The logical level focuses on an abstract represen-
tation of the data, along with languages to create, query and modify it; the physical level
focuses on the underlying implementation, including the physical layout used to store the
data, the indexing and clustering schemes, and the concurrency and recovery protocols.

Database theory has developed primarily around the logical level of databases. (A no-
table exception is concurrency control, which is not addressed in this volume.) A core of
fundamental material on the relational model has become well established. It consists pri-
marily of three paradigms for query languages (algebraic, calculus-based, and deductive)
and the theory of dependencies. The theory of query languages, including issues of expres-
siveness and complexity specific to databases, is well developed. The marriage between
databases and logic programming produced deductive databases, with the main focus on
the deductive query languages. Dependency theory focused initially on formalizing and
applying the disparate integrity constraints that commonly arise in practice, and it went

vii



viii Preface

on to relate constraints with query optimization and to develop a unifying perspective for
them.

As a field, database theory draws on several areas, including mathematical logic, com-
plexity, and programming languages. But the database context brings with it different as-
sumptions, perspectives, and emphases. Relations can be viewed as predicates in the sense
of logic, and the relational calculus as a specialization of the first-order predicate calcu-
lus. However, the database area emphasizes finite structures and has developed the notions
of “domain independence” and “safety” to capture intuitive properties related to this fini-
tude. The questions and techniques in dependency theory borrow heavily from logic, with a
focus on practically motivated, relatively weak classes of sentences. Query languages pro-
vide an interesting contrast with conventional, imperative programming languages. Query
languages typically embody a set-at-a-time focus as opposed to an object-at-a-time fo-
cus. Also, they are largely declarative in nature, and failing that, are more applicative
than imperative. Because of the emphasis on tractability in the face of large volumes of
data, there is considerable interest in query languages that do not have full computational
power, which gives rise to a rich interplay between query languages and complexity the-
ory. Specialized notions of complexity have arisen, stemming from the practical reality of
large volumes of data and the theoretical interest in different query languages. Also, the
important notion of “genericity,” which captures a form of abstraction stemming from the
separation of the logical and physical levels, has led to new perspectives on complexity the-
ory, involving formalisms that circumvent the ordering of input data implicit in traditional
Turing machines.

Exciting new research directions have continued to emerge in database theory, stem-
ming primarily from unanswered questions about query languages and from an interest
in expanding beyond the limitations of the relational model. Current research includes in-
vestigations motivated by connections with object-orientation, artificial intelligence, and
graphics interfaces. And as the database field matures, it, in turn, influences adjacent ar-
eas in computer science, notably finite model theory, programming languages, and logic
programming.

A Note on Style

This book deals with the theory that has developed around the logical level of databases.
It has two main objectives: to provide a focused presentation of the core material and to
present the essence of the advanced material in a unified framework. Some of the advanced
material has never before been presented in book form. The presentation style is quite
rigorous, in that precise definitions and statements of results are provided. However, our
overriding concern was to make things simple to the reader, to get across the intuition
and elegance of the concepts and proofs, rather than adhere to very strict criteria of rigor.
Numerous examples, figures, and exercises should help clarify the development. Some of
the proofs emphasize intuition and leave out much of the detail; we called such a proof a
“crux.” In this way we have tried to achieve a balance between formalism and intuition.
As we went along, a two-tier style emerged, with a tendency towards more rigor in the
exposition of the core material and more intuition in the presentation of advanced and
tangential topics.



Organization of This Book ix

The book is aimed at an eclectic audience. Most broadly, it should be a useful resource
for any computer scientist or mathematician who wishes to find out what database theory
is about. Database researchers and practitioners should find it useful as a reference to both
classical material and to advanced topics, otherwise scattered in sometimes hard-to-read
papers. As a textbook, it is aimed at graduate students and seniors who would use the book
as the main text in a database theory course or as complementary material in a database
systems course. The book is fairly self-contained. Some needed background is provided
concisely in the preliminaries, and the reader is told where more can be found.

We have attempted to make life easier for the database aficionado by adapting the ma-
terial consistently to the database framework. This saves the reader the work of translating
to the database framework, a task which is at best distracting and at worst tedious and con-
fusing. Perhaps the most substantial difference from the conventional presentation arises
in the case of logic programming, where the deductive database point of view has dra-
matic impact. Mostly, things become much simpler because there are no function symbols.
However, for some questions, such as expressive power and complexity, the conventional
approach is simply inapplicable. The book also maintains a strong focus on database theory
issues—tangential material from adjacent areas has been kept to an absolute minimum.

Results are attributed to their sources in bibliographical notes, included at the end of
each chapter.

Organization of This Book

The outline of this book is as follows. Part A contains preliminaries, and a brief introduction
to databases and the relational model.

The basic material on relational query languages is developed in Part B. Throughout
the entire presentation of query languages, we develop in parallel the three query language
paradigms: algebraic, calculus-based, and deductive. The presentation starts with conjunc-
tive queries, which lie at the core of virtually all query languages, both formal and com-
mercial, and have particularly nice properties that make them the prototypical well-behaved
class of queries. We use conjunctive queries as a vehicle to introduce many of the main is-
sues in query languages, which will recur throughout the book. More powerful languages
are then obtained by gradually enriching the conjunctive queries by adding negation, re-
cursion, and finally negation and recursion combined. At each stage, we examine the basic
properties of the newly obtained classes of queries and contrast them with queries consid-
ered previously. Adding union and negation yields three equivalent languages: relational
calculus (first-order logic without function symbols), relational algebra, and non-recursive
datalog¬.

The languages with recursion are studied in Part D. Adding recursion to the conjunc-
tive queries yields datalog. Recursion in combination with negation produces datalog¬
(with the various associated semantics for negation), and other languages, all the way to
the fixpoint and while queries. Included here is a presentation of the logic programming
paradigm in the framework of databases, with implementation techniques, including top-
down, bottom-up, and heuristics for optimization.

Dependency theory is presented in Part C. The emphasis is on functional, join, and
inclusion dependencies, which are widely encountered in practice. We use these classes of



x Preface

dependencies to illustrate the main issues. A larger perspective on more general dependen-
cies is also provided. Uses of dependencies in query optimization and schema design are
presented.

More advanced material on the expressiveness and complexity of query languages is
presented in Part E. The goal is to highlight the aspects of computability and complexity
specific to databases. This includes complexity measures for queries and results on the
connection between languages and complexity classes. In particular, the notion of query is
formalized carefully, and languages that express all queries are exhibited. Some advanced
techniques like 0-1 laws and games, are presented in an informal and self-contained way,
with the aim of making them easily accessible to readers with a limited background in
logic.

Finally, several advanced topics are briefly surveyed in Part F. They include incomplete
information, complex objects and object-oriented databases, and dynamic aspects. These
share the characteristic that they are less settled, and possibly more controversial than the
other topics covered. Our aim is to identify the main concepts and issues in each of these
areas, that are likely to generate a substantial portion of the database theory research in
the coming years. The style is more informal, in the manner of a survey, with most proofs
omitted and pointers provided to current research.

Teaching from This Book

To teach from this book, several paths can be followed. The diagram on page xi indicates
dependencies among chapters. Solid arrows indicate prerequisites. Dashed arrows indicate
preferred, but not mandatory, order among chapters. As a sample, here are some possible
menus:

• The Classic: a basic database theory course covering the classical material would
center around Parts B and C. Chapter 10 and parts of Chapter 9 of Part C are
somewhat more advanced and could be skipped. If time allows, some of Chapter 12
and a selection of Part F might be covered.

• Feast of Query Languages: a course on the theory of query languages would start
with a quick review of the basic material on classical languages (Part B), and con-
tinue with Parts D and E. If time allows, some material on languages for complex
objects and object-oriented databases (Part F) could be covered.

• Gourmet Sampling of Database Theory: a course for people with theoretical ap-
petites that emphasizes the specificity of database theory. Logicians wishing to ex-
plore the connection between finite-model theory and databases will be interested
in Parts C and E. Those interested in descriptive complexity will find Part E clos-
est to their hearts. Researchers in logic programming will prefer Part D, particularly
Chapters 12, 13, and 15. People with a background in theoretical artificial intelli-
gence will find Parts D and F of particular interest. Rule-based systems are related
to Chapter 14 (see also parts of Chapter 22). Programming language people will be
interested in much of the material on query languages, including Chapters 20 and 21
in Part F.

• Fast-Food Database Theory: a course for applied database students that is meant



Acknowledgments xi

to provide informal exposure to some of the basic results of database theory. This
would include assorted topics, with an informal presentation emphasizing the exam-
ples, results, and intuition provided in the text, rather than the proofs. A possible
syllabus would include Part B; parts of Chapters 8, 9, and 11 in Part C; Chapter 12
and parts of Chapter 15 in Part D; and selected chapters of Part F.

Numerous exercises have been included, and they are essentially of three categories.
Routine exercises (unmarked) require easy manipulation of the basic concepts and results.
Harder exercises are marked with a (�). Another category of exercises is meant to com-
plement the material in the text and often contains results from related research articles.
These exercises are usually on the hard side, and some may constitute term projects. These
exercises are marked with a (♠).

1

3

4

5

14

16

17

18

2

78

12

13

6

15

9

10 11

19

22

20

21

Acknowledgments

We are grateful to several people for their many comments and fruitful discussions on
the material of this book: Dennis Allard, Nicole Bidoit, Catriel Beeri, Luca Cabibbo,
Sophie Cluet, Claude Delobel, Guozhu Dong, Sophie Gamerman, Françoise Gire, Gösta



xii Preface

Grahne, Erich Graedel, Stéphane Grumbach, Gerd Hillebrand, Dean Jacobs, Paris Kanel-
lakis, Phokion Kolaitis, Leonid Libkin, Tova Milo, Jan Paredaens, Raghu Ramakrishnan,
Michel Scholl, Jianwen Su, Jan Van den Bussche, Moshe Y. Vardi, and Emmanuel Waller.
We are especially thankful to the following people, who served as formal reviewers of
part or all of the manuscript: Luca Cabibbo, Jan Chomicki, Jeffrey F. Naughton, Daniel
J. Rosenkrantz, Jan Paredaens, Raghu Ramakrishnan, Jianwen Su, Jan Van den Bussche,
Dirk Van Gucht, Moshe Y. Vardi, and Marianne Winslett.

We also wish to thank our students from ENS–Paris, ENST–Paris, UCSD, USC, and
CU-Boulder who suffered through early versions of the book and tested exercises. In
particular, we thank Tim Bailey, Ti-Pin (Ben) Chang, Martha Escobar-Molano, Sergio
Lifschitz, Alvaro Monge, Huda Omran, and Gang Zhou.

We are very grateful for the extensive support and assistance we received from the
staff at Addison-Wesley, including notably Lynne Doran Cote, Katherine Harutunian, and
Peter Shepard on the editorial side, and Helen Wythe on the production side; and the staff
of Superscript Editorial Production Services. We also thank Eileen Hoff and Toni St. Regis
for helping to develop and executing the cover illustration.

We would also like to acknowledge the continuing support of the NSF and the ESPRIT
Program. Finally, the Verso Research Project at INRIA–Rocquencourt provided a warm
and stimulating environment for much of our collaborative work.

SA, RH, VV
Paris


