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D Datalog and Recursion

In Part B, we considered query languages ranging from conjunctive queries to first-order
queries in the three paradigms: algebraic, logic, and deductive. We did this by enriching

the conjunctive queries first with union (disjunction) and then with difference (negation).
In this part, we further enrich these languages by adding recursion. First we add recursion
to the conjunctive queries, which yields datalog. We study this language in Chapter 12.
Although it is too limited for practical use, datalog illustrates some of the essential aspects
of recursion. Furthermore, most existing optimization techniques have been developed for
datalog.

Datalog owes a great debt to Prolog and the logic-programming area in general. A
fundamental contribution of the logic-programming paradigm to relational query languages
is its elegant notation for expressing recursion. The perspective of databases, however, is
significantly different from that of logic programming. (For example, in databases datalog
programs define mappings from instances to instances, whereas logic programs generally
carry their data with them and are studied as stand-alone entities.) We adapt the logic-
programming approach to the framework of databases.

We study evaluation techniques for datalog programs in Chapter 13, which covers
the main optimization techniques developed for recursion in query languages, including
seminaive evaluation and magic sets.

Although datalog is of great theoretical importance, it is not adequate as a practi-
cal query language because of the lack of negation. In particular, it cannot express even
the first-order queries. Chapters 14 and 15 deal with languages combining recursion and
negation, which are proper extensions of first-order queries. Chapter 14 considers the issue
of combining negation and recursion. Languages are presented from all three paradigms,
which support both negation and recursion. The semantics of each one is defined in fun-
damentally operational terms, which include datalog with negation and a straightforward,
fixpoint semantics. As will be seen, the elegant correspondence between languages in the
three paradigms is maintained in the presence of recursion.

Chapter 15 considers approaches to incorporating negation in datalog that are closer
in spirit to logic programming. Several important semantics for negation are presented,
including stratification and well-founded semantics.
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12 Datalog

Alice: What do we see next?
Riccardo: We introduce recursion.

Sergio: He means we ask queries about your ancestors.
Alice: Are you leading me down a garden path?

Vittorio: Kind of—queries related to paths in a graph call for recursion
and are crucial for many applications.

For a long time, relational calculus and algebra were considered the database languages.
Codd even defined as “complete” a language that would yield precisely relational

calculus. Nonetheless, there are simple operations on data that cannot be realized in the
calculus. The most conspicuous example is graph transitive closure. In this chapter, we
study a language that captures such queries and is thus more “complete” than relational
calculus.1 The language, called datalog, provides a feature not encountered in languages
studied so far: recursion.

We start with an example that motivates the need for recursion. Consider a database
for the Parisian Metro. Note that this database essentially describes a graph. (Database
applications in which part of the data is a graph are common.) To avoid making the
Metro database too static, we assume that the database is describing the available metro
connections on a day of strike (not an unusual occurrence). So some connections may
be missing, and the graph may be partitioned. An instance of this database is shown in
Fig. 12.1.

Natural queries to ask are as follows:

(12.1) What are the stations reachable from Odeon?

(12.2) What lines can be reached from Odeon?

(12.3) Can we go from Odeon to Chatelet?

(12.4) Are all pairs of stations connected?

(12.5) Is there a cycle in the graph (i.e., a station reachable in one or more stops from
itself)?

Unfortunately, such queries cannot be answered in the calculus without using some a

1 We postpone a serious discussion of completeness until Part E, where we tackle fundamental issues
such as “What is a formal definition of data manipulation (as opposed to arbitrary computation)?
What is a reasonable definition of completeness for database languages?”

273



274 Datalog

Links Line Station Next Station

4 St.-Germain Odeon

4 Odeon St.-Michel

4 St.-Michel Chatelet

1 Chatelet Louvre

1 Louvre Palais-Royal

1 Palais-Royal Tuileries

1 Tuileries Concorde

9 Pont de Sevres Billancourt

9 Billancourt Michel-Ange

9 Michel-Ange Iena

9 Iena F. D. Roosevelt

9 F. D. Roosevelt Republique

9 Republique Voltaire

Figure 12.1: An instance I of the Metro database

priori knowledge on the Metro graph, such as the graph diameter. More generally, given a
graph G, a particular vertex a, and an integer n, it is easy to write a calculus query finding
the vertexes at distance less than n from a; but it seems difficult to find a query for all
vertexes reachable from a, regardless of the distance. We will prove formally in Chapter 17
that such a query is not expressible in the calculus. Intuitively, the reason is the lack of
recursion in the calculus.

The objective of this chapter is to extend some of the database languages considered
so far with recursion. Although there are many ways to do this (see also Chapter 14), we
focus in this chapter on an approach inspired by logic programming. This leads to a field
called deductive databases, or database logic programming, which shares motivation and
techniques with the logic-programming area.

Most of the activity in deductive databases has focused on a toy language called dat-
alog, which extends the conjunctive queries with recursion. The interaction between nega-
tion and recursion is more tricky and is considered in Chapters 14 and 15. The importance
of datalog for deductive databases is analogous to that of the conjunctive queries for the
relational model. Most optimization techniques for relational algebra were developed for
conjunctive queries. Similarly, in this chapter most of the optimization techniques in de-
ductive databases have been developed around datalog (see Chapter 13).

Before formally presenting the language datalog, we present informally the syntax and
various semantics that are considered for that language. Following is a datalog program
PTC that computes the transitive closure of a graph. The graph is represented in relation G

and its transitive closure in relation T :

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).
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Observe that, except for the fact that relation T occurs both in the head and body of the
second rule, these look like the nonrecursive datalog rules of Chapter 4.

A datalog program defines the relations that occur in heads of rules based on other
relations. The definition is recursive, so defined relations can also occur in bodies of rules.
Thus a datalog program is interpreted as a mapping from instances over the relations
occurring in the bodies only, to instances over the relations occurring in the heads. For
instance, the preceding program maps a relation over G (a graph) to a relation over T (its
transitive closure).

A surprising and elegant property of datalog, and of logic programming in general, is
that there are three very different but equivalent approaches to defining the semantics. We
present the three approaches informally now.

A first approach is model theoretic. We view the rules as logical sentences stating a
property of the desired result. For instance, the preceding rules yield the logical formulas

∀x, y(T (x, y) ← G(x, y))(1)

∀x, y, z(T (x, y) ← (G(x, z) ∧ T (z, y))).(2)

The result T must satisfy the foregoing sentences. However, this is not sufficient to deter-
mine the result uniquely because it is easy to see that there are many T s that satisfy the
sentences. However, it turns out that the result becomes unique if one adds the following
natural minimality requirement: T consists of the smallest set of facts that makes the sen-
tences true. As it turns out, for each datalog program and input, there is a unique minimal
model. This defines the semantics of a datalog program. For example, suppose that the
instance contains

G(a, b),G(b, c),G(c, d).

It turns out that T (a, d) holds in each instance that obeys (1) and (2) and where these three
facts hold. In particular, it belongs to the minimum model of (1) and (2).

The second proof-theoretic approach is based on obtaining proofs of facts. A proof of
the fact T (a, d) is as follows:

(i) G(c, d) belongs to the instance;

(ii) T (c, d) using (i) and the first rule;

(iii) G(b, c) belongs to the instance;

(iv) T (b, d) using (iii), (ii), and the second rule;

(v) G(a, b) belongs to the instance;

(vi) T (a, d) using (v), (iv), and the second rule.

A fact is in the result if there exists a proof for it using the rules and the database facts.
In the proof-theoretic perspective, there are two ways to derive facts. The first is to

view programs as “factories” producing all facts that can be proven from known facts.
The rules are then used bottom up, starting from the known facts and deriving all possible
new facts. An alternative top-down evaluation starts from a fact to be proven and attempts
to demonstrate it by deriving lemmas that are needed for the proof. This is the underlying
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intuition of a particular technique (called resolution) that originated in the theorem-proving
field and lies at the core of the logic-programming area.

As an example of the top-down approach, suppose that we wish to prove T (a, d). Then
by the second rule, this can be done by proving G(a, b) and T (b, d). We know G(a, b), a
database fact. We are thus left with proving T (b, d). By the second rule again, it suffices
to prove G(b, c) (a database fact) and T (c, d). This last fact can be proven using the first
rule. Observe that this yields the foregoing proof (i) to (vi). Resolution is thus a particular
technique for obtaining such proofs. As detailed later, resolution permits variables as well
as values in the goals to be proven and the steps used in the proof.

The last approach is the fixpoint approach. We will see that the semantics of the
program can be defined as a particular solution of a fixpoint equation. This approach leads
to iterating a query until a fixpoint is reached and is thus procedural in nature. However,
this computes again the facts that can be deduced by applications of the rules, and in that
respect it is tightly connected to the (bottom-up) proof-theoretic approach. It corresponds
to a natural strategy for generating proofs where shorter proofs are produced before longer
proofs so facts are proven “as soon as possible.”

In the next sections we describe in more detail the syntax, model-theoretic, fixpoint,
and proof-theoretic semantics of datalog. As a rule, we introduce only the minimum
amount of terminology from logic programming needed in the special database case. How-
ever, we make brief excursions into the wider framework in the text and exercises. The
last section deals with static analysis of datalog programs. It provides decidability and
undecidability results for several fundamental properties of programs. Techniques for the
evaluation of datalog programs are discussed separately in Chapter 13.

12.1 Syntax of Datalog

As mentioned earlier, the syntax of datalog is similar to that of languages introduced in
Chapter 4. It is an extension of nonrecursive datalog, which was introduced in Chapter 4.
We provide next a detailed definition of its syntax. We also briefly introduce some of the
fundamental differences between datalog and logic programming.

Definition 12.1.1 A (datalog) rule is an expression of the form

R1(u1)← R2(u2), . . . , Rn(un),

where n ≥ 1, R1, . . . , Rn are relation names and u1, . . . , un are free tuples of appropriate
arities. Each variable occurring in u1 must occur in at least one of u2, . . . , un. A datalog
program is a finite set of datalog rules.

The head of the rule is the expression R1(u1); and R2(u2), . . . , Rn(un) forms the body.
The set of constants occurring in a datalog program P is denoted adom(P ); and for an

instance I, we use adom(P, I) as an abbreviation for adom(P ) ∪ adom(I).

We next recall a definition from Chapter 4 that is central to this chapter.
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Definition 12.1.2 Given a valuation ν, an instantiation

R1(ν(u1))← R2(ν(u2)), . . . , Rn(ν(un))

of a rule R1(u1)← R2(u2), . . . , Rn(un) with ν is obtained by replacing each variable x by
ν(x).

Let P be a datalog program. An extensional relation is a relation occurring only
in the body of the rules. An intensional relation is a relation occurring in the head of
some rule of P . The extensional (database) schema, denoted edb(P ), consists of the
set of all extensional relation names; whereas the intensional schema idb(P ) consists
of all the intensional ones. The schema of P , denoted sch(P ), is the union of edb(P )
and idb(P ). The semantics of a datalog program is a mapping from database instances
over edb(P ) to database instances over idb(P ). In some contexts, we call the input data
the extensional database and the program the intensional database. Note also that in the
context of logic-based languages, the term predicate is often used in place of the term
relation name.

Let us consider an example.

Example 12.1.3 The following program Pmetro computes the answers to queries (12.1),
(12.2), and (12.3):

St_Reachable(x, x) ←
St_Reachable(x, y) ← St_Reachable(x, z),Links(u, z, y)

Li_Reachable(x, u) ← St_Reachable(x, z),Links(u, z, y)

Ans_1(y) ← St_Reachable(Odeon, y)

Ans_2(u) ← Li_Reachable(Odeon, u)

Ans_3() ← St_Reachable(Odeon,Chatelet)

Observe that St_Reachable is defined using recursion. Clearly,

edb(Pmetro)= {Links},
idb(Pmetro)= {St_Reachable,Li_Reachable,Ans_1,Ans_2,Ans_3}

For example, an instantiation of the second rule of Pmetro is as follows:

St_Reachable(Odeon,Louvre)← St_Reachable(Odeon,Chatelet),

Links(1,Chatelet,Louvre)
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Datalog versus Logic Programming

Given the close correspondence between datalog and logic programming, we briefly high-
light the central differences between these two fields. The major difference is that logic
programming permits function symbols, but datalog does not.

Example 12.1.4 The simple logic program Pleq is given by

leq(0, x)←
leq(s(x), s(y))← leq(x, y)

leq(x,+(x, y))←
leq(x, z)← leq(x, y), leq(y, z)

Here 0 is a constant, s a unary function sysmbol, + a binary function sysmbol, and leq a
binary predicate. Intuitively, s might be viewed as the successor function, + as addition,
and leq as capturing the less-than-or-equal relation. However, in logic programming the
function symbols are given the “free” interpretation—two terms are considered nonequal
whenever they are syntactically different. For example, the terms +(0, s(0)),+(s(0), 0),
and s(0) are all nonequal. Importantly, functional terms can be used in logic programming
to represent intricate data structures, such as lists and trees.

Observe also that in the preceding program the variable x occurs in the head of the
first rule and not in the body, and analogously for the third rule.

Another important difference between deductive databases and logic programs con-
cerns perspectives on how they are typically used. In databases it is assumed that the
database is relatively large and the number of rules relatively small. Furthermore, a da-
talog program P is typically viewed as defining a mapping from instances over the edb
to instances over the idb. In logic programming the focus is different. It is generally as-
sumed that the base data is incorporated directly into the program. For example, in logic
programming the contents of instance Link in the Metro database would be represented
using rules such as Link(4, St.-Germain,Odeon)←. Thus if the base data changes, the
logic program itself is changed. Another distinction, mentioned in the preceding example,
is that logic programs can construct and manipulate complex data structures encoded by
terms involving function symbols.

Later in this chapter we present further comparisons of the two frameworks.

12.2 Model-Theoretic Semantics

The key idea of the model-theoretic approach is to view the program as a set of first-
order sentences (also called a first-order theory) that describes the desired answer. Thus
the database instance constituting the result satisfies the sentences. Such an instance is
also called a model of the sentences. However, there can be many (indeed, infinitely
many) instances satisfying the sentences of a program. Thus the sentences themselves
do not uniquely identify the answer; it is necessary to specify which of the models is
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the intended answer. This is usually done based on assumptions that are external to the
sentences themselves. In this section we formalize (1) the relationship between rules and
logical sentences, (2) the notion of model, and (3) the concept of intended model.

We begin by associating logical sentences with rules, as we did in the beginning of this
chapter. To a datalog rule

ρ : R1(u1)← R2(u2), . . . , Rn(un)

we associate the logical sentence

∀x1, . . . , xm(R1(u1)← R2(u2) ∧ · · · ∧ Rn(un)),

where x1, . . . , xm are the variables occurring in the rule and ← is the standard logical
implication. Observe that an instance I satisfies ρ, denoted I |= ρ, if for each instantiation

R1(ν(u1))← R2(ν(u2)), . . . , Rn(ν(un))

such that R2(ν(u2)), . . . , Rn(ν(un)) belong to I, so does R1(ν(u1)). In the following, we
do not distinguish between a rule ρ and the associated sentence. For a program P , the
conjunction of the sentences associated with the rules of P is denoted by �P .

It is useful to note that there are alternative ways to write the sentences associated with
rules of programs. In particular, the formula

∀x1, . . . , xm(R1(u1)← R2(u2) ∧ · · · ∧ Rn(un))

is equivalent to

∀x1, . . . , xq(∃xq+1, . . . , xm(R2(u2) ∧ · · · ∧ Rn(un))→ R1(u1)),

where x1, . . . , xq are the variables occurring in the head. It is also logically equivalent to

∀x1, . . . , xm(R1(u1) ∨ ¬R2(u2) ∨ · · · ∨ ¬Rn(un)).

This last form is particularly interesting. Formulas consisting of a disjunction of liter-
als of which at most one is positive are called in logic Horn clauses. A datalog program
can thus be viewed as a set of (particular) Horn clauses.

We next discuss the issue of choosing, among the models of �P , the particular model
that is intended as the answer. This is not a hard problem for datalog, although (as we shall
see in Chapter 15) it becomes much more involved if datalog is extended with negation.
For datalog, the idea for choosing the intended model is simply that the model should not
contain more facts than necessary for satisfying �P . So the intended model is minimal in
some natural sense. This is formalized next.

Definition 12.2.1 Let P be a datalog program and I an instance over edb(P ). A model
of P is an instance over sch(P ) satisfying �P . The semantics of P on input I, denoted
P(I), is the minimum model of P containing I, if it exists.
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Station

Odeon
St.-Michel
Chatelet
Louvres
Palais-Royal
Tuileries
Concorde

Ans_1 Line

4
1

Ans_2

〈 〉

Ans_3

Figure 12.2: Relations of Pmetro(I)

For Pmetro as in Example 12.1.3, and I as in Fig. 12.1, the values of Ans_1, Ans_2, and
Ans_3 in P(I) are shown in Fig. 12.2.

We briefly discuss the choice of the minimal model at the end of this section.
Although the previous definition is natural, we cannot be entirely satisfied with it at

this point:

• For given P and I, we do not know (yet) whether the semantics of P is defined (i.e.,
whether there exists a minimum model of �P containing I).

• Even if such a model exists, the definition does not provide any algorithm for
computing P(I). Indeed, it is not (yet) clear that such an algorithm exists.

We next provide simple answers to both of these problems.
Observe that by definition, P(I) is an instance over sch(P ). A priori, we must consider

all instances over sch(P ), an infinite set. It turns out that it suffices to consider only those
instances with active domain in adom(P, I) (i.e., a finite set of instances). For given P and
I, let B(P, I) be the instance over sch(P ) defined by

1. For each R in edb(P ), a fact R(u) is in B(P, I) iff it is in I; and

2. For each R in idb(P ), each fact R(u) with constants in adom(P, I) is in B(P, I).

We now verify that B(P, I) is a model of P containing I.

Lemma 12.2.2 Let P be a datalog program and I an instance over edb(P ). Then B(P, I)
is a model of P containing I.

Proof Let A1 ← A2, . . . , An be an instantiation of some rule r in P such that A2, . . . ,

An hold in B(P, I). Then consider A1. Because each variable occurring in the head of r
also occurs in the body, each constant occurring in A1 belongs to adom(P, I). Thus by
definition 2 just given, A1 is in B(P, I). Hence B(P, I) satisfies the sentence associated
with that particular rule, so B(P, I) satisfies �P . Clearly, B(P, I) contains I by definition 1.
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Thus the semantics of P on input I, if defined, is a subset of B(P, I). This means that
there is no need to consider instances with constants outside adom(P, I).

We next demonstrate that P(I) is always defined.

Theorem 12.2.3 Let P be a datalog program, I an instance over edb(P ), and X the set
of models of P containing I. Then

1. ∩X is the minimal model of P containing I, so P(I) is defined.

2. adom(P (I))⊆ adom(P, I).

3. For each R in edb(P ), P(I)(R)= I(R).

Proof Note that X is nonempty, because B(P, I) is in X . Let r ≡ A1 ← A2, . . . , An be
a rule in P and ν a valuation of the variables occurring in the rule. To prove (1), we show
that

(*) if ν(A2), . . . , ν(An) are in ∩X then ν(A1) is also in ∩X .

For suppose that (*) holds. Then ∩X |= r , so ∩X satisfies �P . Because each instance in X
contains I, ∩X contains I. Hence ∩X is a model of P containing I. By construction, ∩X
is minimal, so (1) holds.

To show (*), suppose that ν(A2), . . . , ν(An) are in ∩X and let K be in X . Because
∩X ⊆K, ν(A2), . . . , ν(An) are in K. Because K is in X , K is a model of P , so ν(A1) is
in K. This is true for each K in X . Hence ν(A1) is in ∩X and (*) holds, which in turn
proves (1).

By Lemma 12.2.2, B(P, I) is a model of P containing I. Therefore P(I)⊆ B(P, I).
Hence

• adom(P (I))⊆ adom(B(P, I))= adom(P, I), so (2) holds.

• For each R in edb(P ), I(R) ⊆ P(I)(R) [because P(I) contains I] and P(I)(R) ⊆
B(P, I)(R)= I(R); which shows (3).

The previous development also provides an algorithm for computing the semantics
of datalog programs. Given P and I, it suffices to consider all instances that are subsets of
B(P, I), find those that are models of P and contain I, and compute their intersection. How-
ever, this is clearly an inefficient procedure. The next section provides a more reasonable
algorithm.

We conclude this section with two remarks on the definition of semantics of datalog
programs. The first explains the choice of a minimal model. The second rephrases our
definition in more standard logic-programming terminology.

Why Choose the Minimal Model?

This choice is the natural consequence of an implicit hypothesis of a philosophical nature:
the closed world assumption (CWA) (see Chapter 2).

The CWA concerns the connection between the database and the world it models.
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Clearly, databases are often incomplete (i.e., facts that may be true in the world are not
necessarily recorded in the database). Thus, although we can reasonably assume that a
fact recorded in the database is true in the world, it is not clear what we can say about
facts not explicitly recorded. Should they be considered false, true, or unknown? The CWA
provides the simplest solution to this problem: Treat the database as if it records complete
information about the world (i.e., assume that all facts not in the database are false). This
is equivalent to taking as true only the facts that must be true in all worlds modeled by
the database. By extension, this justifies the choice of minimal model as the semantics of
a datalog program. Indeed, the minimal model consists of the facts we know must be true
in all worlds satisfying the sentences (and including the input instance). As we shall see,
this has an equivalent proof-theoretic counterpart, which will justify the proof-theoretic
semantics of datalog programs: Take as true precisely the facts that can be proven true
from the input and the sentences corresponding to the datalog program. Facts that cannot
be proven are therefore considered false.

Importantly, the CWA is not so simple to use in the presence of negation or disjunction.
For example, suppose that a database holds {p ∨ q}. Under the CWA, then both ¬p and
¬q are inferred. But the union {p ∨ q,¬p,¬q} is inconsistent, which is certainly not the
intended result.

Herbrand Interpretation

We relate briefly the semantics given to datalog programs to standard logic-programming
terminology.

In logic programming, the facts of an input instance I are not separated from the
sentences of a datalog program P . Instead, sentences stating that all facts in I are true
are included in P . This gives rise to a logical theory �P,I consisting of the sentences in �P

and of one sentence P(u) [sometimes written P(u)←] for each fact P(u) in the instance.
The semantics is defined as a particular model of this set of sentences. A problem is that
standard interpretations in first-order logic permit interpretation of constants of the theory
with arbitrary elements of the domain. For instance, the constants Odeon and St.-Michel
may be interpreted by the same element (e.g., John). This is clearly not what we mean
in the database context. We wish to interpret Odeon by Odeon and similarly for all other
constants. Interpretations that use the identity function to interpret the constant symbols
are called Herbrand interpretations (see Chapter 2). (If function symbols are present,
restrictions are also placed on how terms involving functions are interpreted.) Given a set
� of formulas, a Herbrand model of � is a Herbrand interpretation satisfying �.

Thus in logic programming terms, the semantics of a program P given an instance I
can be viewed as the minimum Herbrand model of �P,I.

12.3 Fixpoint Semantics

In this section, we present an operational semantics for datalog programs stemming from
fixpoint theory. We use an operator called the immediate consequence operator. The oper-
ator produces new facts starting from known facts. We show that the model-theoretic se-
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mantics, P(I), can also be defined as the smallest solution of a fixpoint equation involving
that operator. It turns out that this solution can be obtained constructively. This approach
therefore provides an alternative constructive definition of the semantics of datalog pro-
grams. It can be viewed as an implementation of the model-theoretic semantics.

Let P be a datalog program and K an instance over sch(P ). A fact A is an immediate
consequence for K and P if either A ∈K(R) for some edb relation R, or A← A1, . . . , An

is an instantiation of a rule in P and each Ai is in K. The immediate consequence operator
of P , denoted TP , is the mapping from inst(sch(P )) to inst(sch(P )) defined as follows.
For each K, TP (K) consists of all facts A that are immediate consequences for K and P .

We next note some simple mathematical properties of the operator TP over sets of
instances. We first define two useful properties. For an operator T ,

• T is monotone if for each I, J, I⊆ J implies T (I)⊆ T (J).

• K is a fixpoint of T if T (K)=K.

The proof of the next lemma is straightforward and is omitted (see Exercise 12.9).

Lemma 12.3.1 Let P be a datalog program.

(i) The operator TP is monotone.

(ii) An instance K over sch(P ) is a model of �P iff TP (K)⊆K.

(iii) Each fixpoint of TP is a model of �P ; the converse does not necessarily hold.

It turns out that P(I) (as defined by the model-theoretic semantics) is a fixpoint of TP .
In particular, it is the minimum fixpoint containing I. This is shown next.

Theorem 12.3.2 For each P and I, TP has a minimum fixpoint containing I, which
equals P(I).

Proof Observe first that P(I) is a fixpoint of TP :

• TP (P (I))⊆ P(I) because P(I) is a model of P ; and

• P(I) ⊆ TP (P (I)). [Because TP (P (I)) ⊆ P(I) and TP is monotone, TP (TP (P (I)))
⊆ TP (P (I)). Thus TP (P (I)) is a model of �P . Because TP preserves the contents
of the edb relations and I⊆ P(I), we have I⊆ TP (P (I)). Thus TP (P (I)) is a model
of �P containing I. Because P(I) is the minimum such model, P(I)⊆ TP (P (I)).]

In addition, each fixpoint of TP containing I is a model of P and thus contains P(I) (which
is the intersection of all models of P containing I). Thus P(I) is the minimum fixpoint of
P containing I.

The fixpoint definition of the semantics of P presents the advantage of leading to a
constructive definition of P(I). In logic programming, this is shown using fixpoint theory
(i.e., using Knaster-Tarski’s and Kleene’s theorems). However, the database framework
is much simpler than the general logic-programming one, primarily due to the lack of
function symbols. We therefore choose to show the construction directly, without the
formidable machinery of the theory of fixpoints in complete lattices. In Remark 12.3.5
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we sketch the more standard proof that has the advantage of being applicable to the larger
context of logic programming.

Given an instance I over edb(P ), one can compute TP (I), T 2
P (I), T

3
P (I), etc. Clearly,

I⊆ TP (I)⊆ T 2
P (I)⊆ T 3

P (I) . . .⊆ B(P, I).

This follows immediately from the fact that I ⊆ TP (I) and the monotonicity of TP . Let N
be the number of facts in B(P, I). (Observe that N depends on I.) The sequence {T i

P (I)}i
reaches a fixpoint after at most N steps. That is, for each i ≥ N , T i

P (I) = T N
P (I). In

particular, TP (T N
P (I))= T N

P (I), so T N
P (I) is a fixpoint of TP . We denote this fixpoint by

T ω
P (I).

Example 12.3.3 Recall the program PTC for computing the transitive closure of a
graph G:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).

Consider the input instance

I= {G(1, 2),G(2, 3),G(3, 4),G(4, 5)}.

Then we have

TPTC(I )= I ∪ {T (1, 2), T (2, 3), T (3, 4), T (4, 5)}
T 2
PTC

(I )= TPTC(I ) ∪ {T (1, 3), T (2, 4), T (3, 5)}
T 3
PTC

(I )= T 2
PTC

(I ) ∪ {T (1, 4), T (2, 5)}
T 4
PTC

(I )= T 3
PTC

(I ) ∪ {T (1, 5)}
T 5
PTC

(I )= T 4
PTC

(I ).

Thus T ω
PTC

(I )= T 4
PTC

(I ).

We next show that T ω
P (I) is exactly P(I) for each datalog program P .

Theorem 12.3.4 Let P be a datalog program and I an instance over edb(P ). Then
T ω
P (I)= P(I).

Proof By Theorem 12.3.2, it suffices to show that T ω
P (I) is the minimum fixpoint of TP

containing I. As noted earlier,

TP (T
ω
P (I))= TP (T

N
P (I))= T N

P (I)= T ω
P (I).
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where N is the number of facts in B(P, I). Therefore T ω
P (I) is a fixpoint of TP that con-

tains I.
To show that it is minimal, consider an arbitrary fixpoint J of TP containing I. Then

J ⊇ T 0
P (I)= I. By induction on i, J ⊇ T i

P (I) for each i, so J ⊇ T ω
P (I). Thus T ω

P (I) is the
minimum fixpoint of TP containing I.

The smallest integer i such that T i
P (I)= T ω

P (I) is called the stage for P and I and is
denoted stage(P, I). As already noted, stage(P, I)≤N = |B(P, I)|.

Evaluation

The fixpoint approach suggests a straightforward algorithm for the evaluation of datalog.
We explain the algorithm in an example. We extend relational algebra with a while operator
that allows us to iterate an algebraic expression while some condition holds. (The resulting
language is studied extensively in Chapter 17.)

Consider again the transitive closure query. We wish to compute the transitive closure
of relation G in relation T . Both relations are over AB. This computation is performed by
the following program:

T :=G;
while q(T ) �= T do T := q(T );

where

q(T )=G ∪ πAB(δB→C(G) �� δA→C(T )).

(Recall that δ is the renaming operation as introduced in Chapter 4.)
Observe that q is an SPJRU expression. In fact, at each step, q computes the im-

mediate consequence operator TP , where P is the transitive closure datalog program in
Example 12.3.3. One can show in general that the immediate consequence operator can be
computed using SPJRU expressions (i.e., relational algebra without the difference opera-
tion). Furthermore, the SPJRU expressions extended carefully with a while construct yield
exactly the expressive power of datalog. The test of the while is used to detect when the
fixpoint is reached.

The while construct is needed only for recursion. Let us consider again the nonrecur-
sive datalog of Chapter 4. Let P be a datalog program. Consider the graph (sch(P ), EP ),
where 〈S, S′〉 is an edge in EP if S′ occurs in the head of some rule r in P and S occurs in
the body of r . Then P is nonrecursive if the graph is acyclic. We mentioned already that
nr-datalog programs are equivalent to SPJRU queries (see Section 4.5). It is also easy to
see that, for each nr-datalog program P , there exists a constant d such that for each I over
edb(P ), stage(P, I) ≤ d . In other words, the fixpoint is reached after a bounded number
of steps, dependent only on the program. (See Exercise 12.29.) Programs for which this
happens are called bounded. We examine this property in more detail in Section 12.5.

A lot of redundant computation is performed when running the preceding transitive
closure program. We study optimization techniques for datalog evaluation in Chapter 13.
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Remark 12.3.5 In this remark, we make a brief excursion into standard fixpoint theory
to reprove Theorem 12.3.4. This machinery is needed when proving the analog of that
theorem in the more general context of logic programming. A partially ordered set (U,≤)
is a complete lattice if each subset has a least upper bound and a greatest lower bound,
denoted sup and inf , respectively. In particular, inf (U) is denoted⊥ and sup(U) is denoted
,. An operator T on U is monotone iff for each x, y ∈ U , x ≤ y implies T (x)≤ T (y). An
operator T on U is continuous if for each subset V , T (sup(V )) = sup(T (V )). Note that
continuity implies monotonicity.

To each datalog program P and instance I, we associate the program PI consisting
of the rules of P and one rule R(u)← for each fact R(u) in I. We consider the complete
lattice formed with (inst(sch(P )),⊆) and the operator TPI defined by the following: For
each K, a fact A is in TPI(K) if A is an immediate consequence for K and PI. The operator
TPI on (inst(sch(P )),⊆) is continuous (so also monotone).

The Knaster-Tarski theorem states that a monotone operator in a complete lattice
has a least fixpoint that equals inf ({x | x ∈ U, T (x) ≤ x}). Thus the least fixpoint of TPI

exists. Fixpoint theory also provides the constructive definition of the least fixpoint for
continuous operators. Indeed, Kleene’s theorem states that if T is a continuous operator on
a complete lattice, then its least fixpoint is sup({Ki | i ≥ 0}) where K0 =⊥ and for each
i > 0, Ki = T (Ki−1). Now in our case, ⊥= ∅ and

∅ ∪ TPI(∅) ∪ · · · ∪ T i
PI
(∅) ∪ · · ·

coincides with P(I).
In logic programming, function symbols are also considered (see Example 12.1.4). In

this context, the sequence of {T i
PI
(I)}i>0 does not generally converge in a finite number

of steps, so the fixpoint evaluation is no longer constructive. However, it does converge in
countably many steps to the least fixpoint ∪{T i

PI
(∅) | i ≥ 0}. Thus fixpoint theory is useful

primarily when dealing with logic programs with function symbols. It is an overkill in the
simpler context of datalog.

12.4 Proof-Theoretic Approach

Another way of defining the semantics of datalog is based on proofs. The basic idea is that
the answer of a program P on I consists of the set of facts that can be proven using P and
I. The result turns out to coincide, again, with P(I).

The first step is to define what is meant by proof . A proof tree of a fact A from I and
P is a labeled tree where

1. each vertex of the tree is labeled by a fact;

2. each leaf is labeled by a fact in I;

3. the root is labeled by A; and

4. for each internal vertex, there exists an instantiation A1 ← A2, . . . , An of a rule
in P such that the vertex is labeled A1 and its children are respectively labeled
A2, . . . , An.

Such a tree provides a proof of the fact A.
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(a)  Datalog proof (b)  Context-free derivation

S(1,6)

R(5,a,6)T(1,5)

T(3,5)R(1,a,2) R(2,b,3)

R(3,a,4) R(4,a,5)

rule 2

rule 1

rule 3

S

aT

Ta b

a a

Figure 12.3: Proof tree

Example 12.4.1 Consider the following program:

S(x1, x3)← T (x1, x2), R(x2, a, x3)

T (x1, x4)← R(x1, a, x2), R(x2, b, x3), T (x3, x4)

T (x1, x3)← R(x1, a, x2), R(x2, a, x3)

and the instance

{R(1, a, 2), R(2, b, 3), R(3, a, 4), R(4, a, 5), R(5, a, 6)}.

A proof tree of S(1, 6) is shown in Fig. 12.3(a).

The reader familiar with context-free languages will notice the similarity between
proof trees and derivation trees in context-free languages. This connection is especially
strong in the case of datalog programs that have the form of the one in Example 12.4.1.
This will be exploited in the last section of this chapter.

Proof trees provide proofs of facts. It is straightforward to show that a fact A is in P(I)
iff there exists a proof tree for A from I and P . Now given a fact A to prove, one can look
for a proof either bottom up or top down.

The bottom-up approach is an alternative way of looking at the constructive fixpoint
technique. One begins with the facts from I and then uses the rules to infer new facts, much
like the immediate consequence operator. This is done repeatedly until no new facts can be
inferred. The rules are used as “factories” producing new facts from already proven ones.
This eventually yields all facts that can be proven and is essentially the same as the fixpoint
approach.

In contrast to the bottom-up and fixpoint approaches, the top-down approach allows
one to direct the search for a proof when one is only interested in proving particular facts.
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For example, suppose the query Ans_1(Louvre) is posed against the program Pmetro of
Example 12.1.3, with the input instance of Fig. 12.1. Then the top-down approach will
never consider atoms involving stations on Line 9, intuitively because they are are not
reachable from Odeon or Louvre. More generally, the top-down approach inhibits the
indiscriminate inference of facts that are irrelevant to the facts of interest.

The top-down approach is described next. This takes us to the field of logic program-
ming. But first we need some notation, which will remind us once again that “To bar an
easy access to newcomers every scientific domain has introduced its own terminology and
notation” [Apt91].

Notation

Although we already borrowed a lot of terminology and notation from the logic-program-
ming field (e.g., term, fact, atom), we must briefly introduce some more.

A positive literal is an atom [i.e., P(u) for some free tuple u]; and a negative literal is
the negation of one [i.e., ¬P(u)]. A formula of the form

∀x1, . . . , xm(A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bp),

where the Ai, Bj are positive literals, is called a clause. Such a clause is written in clausal
form as

A1, . . . , An← B1, . . . , Bp.

A clause with a single literal in the head (n= 1) is called a definite clause. A definite clause
with an empty body is called a unit clause. A clause with no literal in the head is called a
goal clause. A clause with an empty body and head is called an empty clause and is denoted

. Examples of these and their logical counterparts are as follows:

definite T (x, y)← R(x, z), T (z, y) T (x, y) ∨ ¬R(x, z) ∨ ¬T (z, y)
unit T (x, y)← T (x, y)

goal ← R(x, z), T (z, y) ¬R(x, z) ∨ ¬T (z, y)
empty false

The empty clause is interpreted as a contradiction. Intuitively, this is because it corresponds
to the disjunction of an empty set of formulas.

A ground clause is a clause with no occurrence of variables.
The top-down proof technique introduced here is called SLD resolution. Goals serve

as the basic focus of activity in SLD resolution. As we shall see, the procedure begins
with a goal such as ← St_Reachable(x,Concorde), Li_Reachable(x, 9). A correct an-
swer of this goal on input I is any value a such that St_Reachable(a,Concorde) and
Li_Reachable(a, 9) are implied by �Pmetro,I. Furthermore, each intermediate step of the
top-down approach consists of obtaining a new goal from a previous goal. Finally, the
procedure is deemed successful if the final goal reached is empty.

The standard exposition of SLD resolution is based on definite clauses. There is a
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subtle distinction between datalog rules and definite clauses: For datalog rules, we imposed
the restriction that each variable that occurs in the head also appears in the body. (In
particular, a datalog unit clause must be ground.) We will briefly mention some minor
consequences of this distinction.

As already introduced in Remark 12.3.5, to each datalog program P and instance I,
we associate the program PI consisting of the rules of P and one rule R(u)← for each
fact R(u) in I. Therefore in the following we ignore the instance I and focus on programs
that already integrate all the known facts in the set of rules. We denote such a program PI
to emphasize its relationship to an instance I. Observe that from a semantic point of view

P(I)= PI(∅).

This ignores the distinction between edb and idb relations, which no longer exists for PI.

Example 12.4.2 Consider the program P and instance I of Example 12.4.1. The rules
of PI are

1. S(x1, x3)← T (x1, x2), R(x2, a, x3)

2. T (x1, x4)← R(x1, a, x2), R(x2, b, x3), T (x3, x4)

3. T (x1, x3)← R(x1, a, x2), R(x2, a, x3)

4. R(1, a, 2)←
5. R(2, b, 3)←
6. R(3, a, 4)←
7. R(4, a, 5)←
8. R(5, a, 6)←

Warm-Up

Before discussing SLD resolution, as a warm-up we look at a simplified version of the
technique by considering only ground rules. To this end, consider a datalog program PI
(integrating the facts) consisting only of fully instantiated rules (i.e., with no occurrences
of variables). Consider a ground goal g ≡

← A1, . . . , Ai, . . . , An

and some (ground) rule r ≡ Ai ← B1, . . . , Bm in PI. A resolvent of g with r is the ground
goal

← A1, . . . , Ai−1, B1, . . . , Bm,Ai+1, . . . , An.

Viewed as logical sentences, the resolvent of g with r is actually implied by g and r .
This is best seen by writing these explicitly as clauses:
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R(5,a,6)

S(1,6) ← T(1,5), R(5,a,6)

R(2,b,3), T(3,5), R(5,a,6)

T(1,5) ← R(1,a,2), R(2,b,3), T(3,5)

T(3,5), R(5,a,6)

R(1,a,2) ←

R(5,a,6)

R(2,b,3) ← 

R(4,a,5), R(5,a,6)

T(3,5) ← R(3,a,4), R(4,a,5)

R(5,a,6)

R(3,a,4) ←

R(4,a,5) ← 

R(5,a,6) ←

← S(1,6)

← T(1,5),

← R(1,a,2),

← R(2,b,3),

← T(3,5),

← R(3,a,4),

← R(4,a,5),

← R(5,a,6)

←

Figure 12.4: SLD ground refutation

(¬A1 ∨ · · · ∨ ¬Ai ∨ · · · ∨ ¬An) ∧ (Ai ∨ ¬B1 ∨ · · · ∨ ¬Bm)

⇒ (¬A1 ∨ · · · ∨ ¬Ai−1 ∨ ¬B1 ∨ · · · ∨ ¬Bm ∨ ¬Ai+1 ∨ · · · ∨ ¬An).

In general, the converse does not hold.
A derivation from g with PI is a sequence of goals g ≡ g0, g1, . . . such that for each

i > 0, gi is a resolvent of gi−1 with some rule in PI. We will see that to prove a fact A, it
suffices to exhibit a refutation of ← A—that is, a derivation

g0 ≡← A, g1, . . . , gi, . . . , gq ≡ .

Example 12.4.3 Consider Example 12.4.1 and the program obtained by all possible
instantiations of the rules of PI in Example 12.4.2. An SLD ground refutation is shown
in Fig. 12.4. It is a refutation of ← S(1, 6) [i.e. a proof of S(1, 6)].

Let us now explain why refutations provide proofs of facts. Suppose that we wish to
prove A1 ∧ · · · ∧ An. To do this we may equivalently prove that its negation (i.e. ¬A1 ∨
· · · ∨ ¬An) is false. In other words, we try to refute (or disprove) ← A1, . . . , An. The
following rephrasing of the refutation in Fig. 12.4 should make this crystal clear.
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Example 12.4.4 Continuing with the previous example, to prove S(1, 6), we try to refute
its negation [i.e.,¬S(1, 6) or← S(1, 6)]. This leads us to considering, in turn, the formulas

Goal Rule used

¬S(1, 6) (1)
⇒ ¬T (1, 5) ∨ ¬R(5, a, 6) (2)
⇒ ¬R(1, a, 2) ∨ ¬R(2, b, 3) ∨ ¬T (3, 5) ∨ ¬R(5, a, 6) (4)
⇒ ¬R(2, b, 3) ∨ ¬T (3, 5) ∨ ¬R(5, a, 6) (5)
⇒ ¬T (3, 5) ∨ ¬R(5, a, 6) (3)
⇒ ¬R(3, a, 4) ∨ ¬R(4, a, 5) ∨ ¬R(5, a, 6) (6)
⇒ ¬R(4, a, 5) ∨ ¬R(5, a, 6) (7)
⇒ ¬R(5, a, 6) (8)
⇒ false

At the end of the derivation, we have obtained a contradiction. Thus we have refuted
¬S(1, 6) [i.e., proved S(1, 6)].

Thus refutations provide proofs. As a consequence, a goal can be thought of as a query.
Indeed, the arrow is sometimes denoted with a question mark in goals. For instance, we
sometimes write

?- S(1, 6) for ← S(1, 6).

Observe that the process of finding a proof is nondeterministic for two reasons: the
choice of the literal A to replace and the rule that is used to replace it.

We now have a technique for proving facts. The benefit of this technique is that it is
sound and complete, in the sense that the set of facts in P(I) coincides with the facts that
can be proven from PI.

Theorem 12.4.5 Let PI be a datalog program and ground(PI) be the set of instantiations
of rules in PI with values in adom(P, I). Then for each ground goal g, PI(∅) |= ¬g iff there
exists a refutation of g with ground(PI).

Crux To show the “only if,” we prove by induction that

(**)
for each ground goal g, if T i

PI
(∅) |= ¬g,

there exists a refutation of g with ground(PI).

(The “if” part is proved similarly by induction on the length of the refutation. Its proof is
left for Exercise 12.18.)

The base case is obvious. Now suppose that (**) holds for some i ≥ 0, and let
A1, . . . , Am be ground atoms such that T i+1

PI
(∅) |= A1 ∧ · · · ∧ Am. Therefore each Aj is

in T i+1
PI

(∅). Consider some j . If Aj is an edb fact, we are back to the base case. Otherwise
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R(x2,a,x)

S(x1,x3) ← T(x1,x2), R(x2,a,x3)

R(y2,b,x3), T(x3,x2), R(x2,a,x)

T(x1,x4) ← R(x1,a,x2), R(x2,b,x3), T(x3,x4)

T(x3,x2), R(x2,a,x)

R(1,a,2) ←

R(x2,a,x)

R(2,b,3) ← 

R(z2,a,x2), R(x2,a,x)

T(x1,x3) ← R(x1,a,x2), R(x2,a,x3)

R(x2,a,x)

R(3,a,4) ←

R(4,a,5) ← 

R(5,a,6) ←

← S(1,x)

← T(1,x2),

← R(1,a,y2),

← R(2,b,x3),

← T(3,x2),

← R(3,a,z2),

← R(4,a,x2),

← R(5,a,x)

←

Figure 12.5: SLD refutation

there exists an instantiation Aj ← B1, . . . , Bp of some rule in PI such that B1, . . . , Bp are
in T i

PI
(∅). The refutation of ← Aj with ground(PI) is as follows. It starts with

← Aj

← B1, B2 . . . , Bp.

Now by induction there exist refutations of ← Bn, 1 ≤ n ≤ p, with ground(PI). Using
these refutations, one can extend the preceding derivation to a derivation leading to the
empty clause. Furthermore, the refutations for each of the Aj ’s can be combined to obtain
a refutation of← A1, . . . , Am as desired. Therefore (**) holds for i + 1. By induction, (**)
holds.

SLD Resolution

The main difference between the general case and the warm-up is that we now handle
goals and tuples with variables rather than just ground ones. In addition to obtaining the
goal , the process determines an instantiation θ for the free variables of the goal g, such
that PI(∅) |= ¬θg. We start with an example: An SLD refutation of← S(1, x) is shown in
Fig. 12.5.

In general, we start with a goal (which does not have to be ground):
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← A1, . . . , Ai, . . . , An.

Suppose that we selected a literal to be replaced [e.g., Ai =Q(1, x2, x5)]. Any rule used
for the replacement must have Q for predicate in the head, just as in the ground case. For
instance, we might try some rule

Q(x1, x4, x3)← P(x1, x2), P (x2, x3),Q(x3, x4, x5).

We now have two difficulties:

(i) The same variable may occur in the selected literal and in the rule with two
different meanings. For instance, x2 in the selected literal is not to be confused
with x2 in the rule.

(ii) The pattern of constants and of equalities between variables in the selected literal
and in the head of the rule may be different. In our example, for the first attribute
we have 1 in the selected literal and a variable in the rule head.

The first of these two difficulties is handled easily by renaming the variables of the rules.
We shall use the following renaming discipline: Each time a rule is used, a new set of
distinct variables is substituted for the ones in the rule. Thus we might use instead the rule

Q(x11, x14, x13)← P(x11, x12), P (x12, x13),Q(x13, x14, x15).

The second difficulty requires a more careful approach. It is tackled using unification,
which matches the pattern of the selected literal to that of the head of the rule, if possible.
In the example, unification consists of finding a substitution θ such that θ(Q(1, x2, x5))=
θ(Q(x11, x14, x13)). Such a substitution is called a unifier. For example, the substitu-
tion θ(x11) = 1, θ(x2) = θ(x14) = θ(x5) = θ(x13) = y is a unifier for Q(1, x2, x5) and
Q(x11, x14, x13), because θ(Q(1, x2, x5)) = θ(Q(x11, x14, x13)) = Q(1, y, y). Note that
this particular unifier is unnecessarily restrictive; there is no reason to identify all of
x2, x3, x4, x5.

A unifier that is no more restrictive than needed to unify the atoms is called a most
general unifier (mgu). Applying the mgu to the rule to be used results in specializing the
rule just enough so that it applies to the selected literal. These terms are formalized next.

Definition 12.4.6 Let A,B be two atoms. A unifier for A and B is a substitution θ such
that θA= θB. A substitution θ is more general than a substitution ν, denoted θ ↪→ ν, if
for some substitution ν′, ν = θ ◦ ν′. A most general unifier (mgu) for A and B is a unifier
θ for A,B such that, for each unifier ν of A,B, we have θ ↪→ ν.

Clearly, the relation ↪→ between unifiers is reflexive and transitive but not antisym-
metric. Let ≈ be the equivalence relation on substitutions defined by θ ≈ ν iff θ ↪→ ν and
ν ↪→ θ . If θ ≈ ν, then for each atom A, θ(A) and ν(A) are the same modulo renaming of
variables.
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Computing the mgu

We now develop an algorithm for computing an mgu for two atoms. Let R be a relation
of arity p and R(x1, . . . , xp), R(y1, . . . , yp) two literals with disjoint sets of variables.
Compute ≡, the equivalence relation on var ∪ dom defined as the reflexive, transitive
closure of: xi ≡ yi for each i in [1, p]. The mgu of R(x1, . . . , xp) and R(y1, . . . , yp) does
not exist if two distinct constants are in the same equivalence class. Otherwise their mgu is
the substitution θ such that

1. If z≡ a for some constant a, θ(z)= a;

2. Otherwise θ(z)= z′, where z′ is the smallest (under a fixed ordering on var) such
that z≡ z′.

We show that the foregoing computes an mgu.

Lemma 12.4.7 The substitution θ just computed is an mgu for R(x1, . . . , xp) and
R(y1, . . . , yp).

Proof Clearly, θ is a unifier for R(x1, . . . , xp) and R(y1, . . . , yp). Suppose ν is another
unifier for the same atoms. Let ≡ν be the equivalence relation on var ∪ dom defined by
x ≡ν y iff ν(x) = ν(y). Because ν is a unifier, ν(xi) = ν(yi). It follows that xi ≡ν yi, so
≡ refines≡ν. Then the substitution ν′ defined by ν′(θ(x))= ν(x), is well defined, because
θ(x)= θ(x′) implies ν(x)= ν(x′). Thus ν = θ ◦ ν′ so θ ↪→ ν. Because this holds for every
unifier ν, it follows that θ is an mgu for the aforementioned atoms.

The following facts about mgu’s are important to note. Their proof is left to the reader
(Exercise 12.19). In particular, part (ii) of the lemma says that the mgu of two atoms, if it
exists, is essentially unique (modulo renaming of variables).

Lemma 12.4.8 Let A,B be atoms.

(i) If there exists a unifier for A,B, then A,B have an mgu.

(ii) If θ and θ ′ are mgu’s for A,B then θ ≈ θ ′.
(iii) Let A,B be atoms with mgu θ . Then for each atom C, if C = θ1A = θ2B for

substitutions θ1, θ2, then C = θ3(θ(A))= θ3(θ(B)) for some substitution θ3.

We are now ready to rephrase the notion of resolvent to incorporate variables. Let

g ≡← A1, . . . , Ai, . . . , An, r ≡ B1 ← B2, . . . , Bm

be a goal and a rule such that

1. g and r have no variable in common (which can always be ensured by renaming
the variables of the rule).

2. Ai and B1 have an mgu θ .
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Then the resolvent of g with r using θ is the goal

← θ(A1), . . . , θ(Ai−1), θ(B2), . . . , θ(Bm), θ(Ai+1), . . . , θ(An).

As before, it is easily verified that this resolvent is implied by g and r .
An SLD derivation from a goal g with a program PI is a sequence g0 = g, g1, . . . of

goals and θ0, . . . of substitutions such that for each j , gj is the resolvent of gj−1 with
some rule in PI using θj1. An SLD refutation of a goal g with PI is an SLD derivation
g0 = g, . . . , gq = with PI.

We now explain the meaning of such a refutation. As in the variable-free case, the
existence of a refutation of a goal ← A1, . . . , An with PI can be viewed as a proof of the
negation of the goal. The goal is

∀x1, . . . , xm(¬A1 ∨ · · · ∨ ¬An)

where x1, . . . , xm are the variables in the goal. Its negation is therefore equivalent to

∃x1, . . . , xm(A1 ∧ · · · ∧ An),

and the refutation can be seen as a proof of its validity. Note that, in the case of datalog
programs (where by definition all unit clauses are ground), the composition θ1 ◦ · · · ◦ θq
of mgu’s used while refuting the goal yields a substitution by constants. This substitution
provides “witnesses” for the existence of the variables x1, . . . , xm making true the conjunc-
tion. In particular, by enumerating all refutations of the goal, one could obtain all values
for the variables satisfying the conjunction—that is, the answer to the query

{〈x1, . . . , xm〉 | A1 ∧ · · · ∧ An}.

This is not the case when one allows arbitrary definite clauses rather than datalog rules, as
illustrated in the following example.

Example 12.4.9 Consider the program

S(x, z)←G(x, z)

S(x, z)←G(x, y), S(y, z)

S(x, x)←
that computes in S the reflexive transitive closure of graphG. This is a set of definite clauses
but not a datalog program because of the last rule. However, resolution can be extended to
(and is indeed in general presented for) definite clauses. Observe, for instance, that the goal
← S(w,w) is refuted with a substitution that does not bind variable w to a constant.

SLD resolution is a technique that provides proofs of facts. One must be sure that
it produces only correct proofs (soundness) and that it is powerful enough to prove all
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true facts (completeness). To conclude this section, we demonstrate the soundness and
completeness of SLD resolution for datalog programs.

We use the following lemma:

Lemma 12.4.10 Let g ≡← A1, . . . , Ai, . . . , An and r ≡ B1 ← B2, . . . , Bm be a goal and
a rule with no variables in common, and let

g′ ≡← A1, . . . , Ai−1, B2, . . . , Bm,Ai+1, . . . , An.

If θg′ is a resolvent of g with r using θ , then the formula r implies:

r ′ ≡ ¬θg′ → ¬θg
= θ(A1 ∧ · · · ∧ Ai−1 ∧ B2 ∧ · · · ∧ Bm ∧ Ai+1 ∧ · · · ∧ An)→ θ(A1 ∧ · · · ∧ An).

Proof Let J be an instance over sch(P ) satisfying r and let valuation ν be such that

J |= ν[θ(A1) ∧ · · · ∧ θ(Ai−1) ∧ θ(B2) ∧ · · · ∧ θ(Bm) ∧ θ(Ai+1) ∧ · · · ∧ θ(An)].

Because

J |= ν[θ(B2) ∧ · · · ∧ θ(Bm)]

and J |= B1 ← B2, . . . , Bm, J |= ν[θ(B1)]. That is, J |= ν[θ(Ai)]. Thus

J |= ν[θ(A1) ∧ · · · ∧ θ(An)].

Hence for each ν, J |= νr ′. Therefore J |= r ′. Thus each instance over sch(P ) satisfying r

also satisfies r ′, so r implies r ′.

Using this lemma, we have the following:

Theorem 12.4.11 (Soundness of SLD resolution) Let PI be a program and g ≡←
A1, . . . , An a goal. If there exists an SLD-refutation of g with PI and mgu’s θ1, . . . , θq ,
then PI implies

θ1 ◦ · · · ◦ θq(A1 ∧ · · · ∧ An).

Proof Let J be some instance over sch(P ) satisfying PI. Let g0 = g, . . . , gq = be an
SLD refutation of g with PI and for each j , let gj be a resolvent of gj−1 with some rule in
PI using some mgu θj . Then for each j , the rule that is used implies ¬gj → θj(¬gj−1) by
Lemma 12.4.10. Because J satisfies PI, for each j ,

J |= ¬gj → θj(¬gj−1).
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Clearly, this implies that for each j ,

J |= θj+1 ◦ · · · ◦ θq(¬gj)→ θj ◦ · · · ◦ θq(¬gj−1).

By transitivity, this shows that

J |= ¬gq → θ1 ◦ · · · ◦ θq(¬g0),

and so

J |= true→ θ1 ◦ · · · ◦ θq(¬g).

Thus J |= θ1 ◦ · · · ◦ θq(A1 ∧ · · · ∧ An).

We next prove the converse of the previous result (namely, the completeness of SLD
resolution).

Theorem 12.4.12 (Completeness of SLD resolution) Let PI be a program and g ≡←
A1, . . . , An a goal. If PI implies ¬g, then there exists a refutation of g with PI.

Proof Suppose that PI implies ¬g. Consider the set ground(PI) of instantiations of rules
in PI with constants in adom(P, I). Clearly, ground(PI)(∅) is a model of PI, so it satisfies
¬g. Thus there exists a valuation θ of the variables in g such that ground(PI)(∅) satisfies
¬θg. By Theorem 12.4.5, there exists a refutation of θg using ground(PI).

Let g0 = θg, . . . , gp = be that refutation. We show by induction on k that for each
k in [0, p],

(†) there exists a derivation g′0 = g, . . . , g′k with PI such that gk = θkg
′
k for some θk.

For suppose that (†) holds for each k. Then for k = p, there exists a derivation g′1 =
g, . . . , g′p with PI such that = gp = θpg

′
p for some θp, so g′p = . Therefore there exists

a refutation of g with PI.
The basis of the induction holds because g0 = θg = θg′0. Now suppose that (†) holds

for some k. The next step of the refutation consists of selecting some atom B of gk and
applying a rule r in ground(PI). In g′k select the atom B ′ with location in g′ corresponding
to the location of B in gk. Note that B = θkB

′. In addition, we know that there is rule
r ′′ = B ′′ ← A′′1 . . . A

′′
n in PI that has r for instantiation via some substitution θ ′′ (such

a pair B ′, r ′′ exists although it may not be unique). As usual, we can assume that the
variables in g′k are disjoint from those in r ′′. Let θk ⊕ θ ′′ be the substitution defined by
θk ⊕ θ ′′(x)= θk(x) if x is a variable in g′k, and θk ⊕ θ ′′(x)= θ ′′(x) if x is a variable in r ′′.
Clearly, θk ⊕ θ ′′(B ′)= θk ⊕ θ ′′(B ′′)= B so, by Lemma 12.4.8 (i), B ′ and B ′′ have some
mgu θ . Let g′k+1 be the resolvent of g′k with r ′′, B ′ using mgu θ . By the definition of mgu,
there exists a substitution θk+1 such that θk ⊕ θ ′′ = θ ◦ θk+1. Clearly, θk+1(g

′
k+1) = gk+1

and (†) holds for k + 1. By induction, (†) holds for each k.
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← S(1,x)

← T(1,x2),  R(x2,a,x)

1:x1/1,x3/x

2:x1/1,x2/y2,x4/x2

← R(1,a,y2), R(y2,b,x3),  T(x3,x2),  R(x2,a,x)

3:x1/x3,x2/z2,x3/x2

← R(1,a,y2),  R(y2,b,x3), R(x3,a,z2), T(z3,x2), R(x2,a,x)

← R(2,b,x3),  R(x3,a,z2), R(z2,a,x2), R(x2,a,x)

5:x3/3

4:y2/2

← R(3,a,z2),  R(z2,a,x2), R(x2,a,x)

6:z2/4

← R(4,a,x2),  R(x2,a,x)

7:x2/5

← R(5,a,x)

8:x/6

Infinite
subtree

← R(1,a,y2),  R(y2,a,x2), R(x2,a,x)

← R(1,a,1),  R(1,a,x2), R(x2,a,x)

4:y2/1

no possible derivation

3:x1/1,x2/y2,x3/x2

2

Figure 12.6: SLD tree

SLD Trees

We have shown that SLD resolution is sound and complete. Thus it provides an adequate
top-down technique for obtaining the facts in the answer to a datalog program. To prove that
a fact is in the answer, one must search for a refutation of the corresponding goal. Clearly,
there are many refutations possible. There are two sources of nondeterminism in searching
for a refutation: (1) the choice of the selected atom, and (2) the choice of the clause to unify
with the atom. Now let us assume that we have fixed some golden rule, called a selection
rule, for choosing which atom to select at each step in a refutation. A priori, such a rule
may be very simple (e.g., as in Prolog, always take the leftmost atom) or in contrast very
involved, taking into account the entire history of the refutation. Once an atom has been
selected, we can systematically search for all possible unifying rules. Such a search can be
represented in an SLD tree. For instance, consider the tree of Fig. 12.6 for the program in
Example 12.4.2. The selected atoms are represented with boxes. Edges denote unifications
used. Given S(1, x), only one rule can be used. Given T (1, x2), two rules are applicable
that account for the two descendants of vertex T (1, x2). The first number in edge labels
denotes the rule that is used and the remaining part denotes the substitution. An SLD tree
is a representation of all the derivations obtained with a fixed selection rule for atoms.
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There are several important observations to be made about this particular SLD tree:

(i) It is successful because one branch yields .

(ii) It has an infinite subtree that corresponds to an infinite sequence of applications
of rule (2) of Example 12.4.2.

(iii) It has a blocking branch.

We can now explain (to a certain extent) the acronym SLD. SLD stands for selection
rule-driven linear resolution for definite clauses. Rule-driven refers to the rule used for
selecting the atom. An important fact is that the success or failure of an SLD tree does not
depend on the rule for selecting atoms. This explains why the definition of an SLD tree
does not specify the selection rule.

Datalog versus Logic Programming, Revisited

Having established the three semantics for datalog, we summarize briefly the main differ-
ences between datalog and the more general logic-programming (lp) framework.

Syntax: Datalog has only relation symbols, whereas lp uses also function symbols. Datalog
requires variables in rule heads to appear in bodies; in particular, all unit clauses are
ground.

Model-theoretic semantics: Due to the presence of function symbols in lp, models of lp
programs may be infinite. Datalog programs always have finite models. Apart from
this distinction, lp and datalog are identical with respect to model-theoretic semantics.

Fixpoint semantics: Again, the minimum fixpoint of the immediate consequence operator
may be infinite in the lp case, whereas it is always finite for datalog. Thus the fixpoint
approach does not necessarily provide a constructive semantics for lp.

Proof-theoretic semantics: The technique of SLD resolution is similar for datalog and lp,
with the difference that the computation of mgu’s becomes slightly more complicated
with function symbols (see Exercise 12.20). For datalog, the significance of SLD
resolution concerns primarily optimization methods inspired by resolution (such as
“magic sets”; see Chapter 13). In lp, SLD resolution is more important. Due to the
possibly infinite answers, the bottom-up approach of the fixpoint semantics may not
be feasible. On the other hand, every fact in the answer has a finite proof by SLD
resolution. Thus SLD resolution emerges as the practical alternative.

Expressive power: A classical result is that lp can express all recursively enumerable (r.e.)
predicates. However, as will be discussed in Part E, the expressive power of datalog
lies within ptime. Why is there such a disparity? A fundamental reason is that function
symbols are used in lp, and so an infinite domain of objects can be constructed from a
finite set of symbols. Speaking technically, the result for lp states that if S is a (possibly
infinite) r.e. predicate over terms constructed using a finite language, then there is an
lp program that produces for some predicate symbol exactly the tuples in S. Speaking
intuitively, this follows from the facts that viewed in a bottom-up sense, lp provides
composition and looping, and terms of arbitrary length can be used as scratch paper
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(e.g., to simulate a Turing tape). In contrast, the working space and output of range-
restricted datalog programs are always contained within the active domain of the input
and the program and thus are bounded in size.

Another distinction between lp and datalog in this context concerns the nature of
expressive power results for datalog and for query languages in general. Specifically,
a datalog program P is generally viewed as a mapping from instances of edb(P )
to instances of idb(P ). Thus expressive power of datalog is generally measured in
comparison with mappings on families of database instances rather than in terms of
expressing a single (possibly infinite) predicate.

12.5 Static Program Analysis

In this section, the static analysis of datalog programs is considered.2 As with relational
calculus, even simple static properties are undecidable for datalog programs. In particular,
although tableau homomorphism allowed us to test the equivalence of conjunctive queries,
equivalence of datalog programs is undecidable in general. This complicates a systematic
search for alternative execution plans for datalog queries and yields severe limitations
to query optimization. It also entails the undecidability of many other problems related
to optimization, such as deciding when selection propagation (in the style of “pushing”
selections in relational algebra) can be performed, or when parallel evaluation is possible.

We consider three fundamental static properties: satisfiability, containment, and a new
one, boundedness. We exhibit a decision procedure for satisfiability. Recall that we showed
in Chapter 5 that an analogous property is undecidable for CALC. The decidability of
satisfiability for datalog may therefore be surprising. However, one must remember that,
although datalog is more powerful than CALC in some respects (it has recursion), it is less
powerful in others (there is no negation). It is the lack of negation that makes satisfiability
decidable for datalog.

We prove the undecidability of containment and boundedness for datalog programs
and consider variations or restrictions that are decidable.

Satisfiability

Let P be a datalog program. An intensional relation T is satisfiable by P if there exists
an instance I over edb(P ) such that P(I)(T ) is nonempty. We give a simple proof of the
decidability of satisfiability for datalog programs. We will soon see an alternative proof
based on context-free languages.

We first consider constant-free programs. We then describe how to reduce the general
case to the constant-free one.

To prove the result, we use an auxiliary result about instance homomorphisms that is of
some interest in its own right. Note that any mapping θ from dom to dom can be extended
to a homomorphism over the set of instances, which we also denote by θ .

2 Recall that static program analysis consists of trying to detect statically (i.e., at compile time)
properties of programs.
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Lemma 12.5.1 Let P be a constant-free datalog program, I, J two instances over sch(P ),
q a positive-existential query over sch(P ), and θ a mapping over dom. If θ(I)⊆ J, then
(i) θ(q(I))⊆ q(J), and (ii) θ(P (I))⊆ P(J).

Proof For (i), observe that q is monotone and that q ◦ θ ⊆ θ ◦ q (which is not necessary
if q has constants). Because TP can be viewed as a positive-existential query, a straightfor-
ward induction proves (ii).

This result does not hold for datalog programs with constants (see Exercise 12.21).

Theorem 12.5.2 The satisfiability of an idb relation T by a constant-free datalog pro-
gram P is decidable.

Proof Suppose that T is satisfiable by a constant-free datalog program P . We prove that
P(Ia)(T ) is nonempty for some particular instance Ia. Let a be in dom. Let Ia be the
instance over edb(P ) such that for each R in edb(P ), Ia(R) contains a single tuple with a
in each entry. Because T is satisfiable by P , there exists I such that P(I)(T ) �= ∅. Consider
the function θ that maps every constant in dom to a. Then θ(I) ⊆ Ia. By the previous
lemma, θ(P (I)) ⊆ P(Ia). Therefore P(Ia)(T ) is nonempty. Hence T is satisfiable by P
iff P(Ia)(T ) �= ∅.

Let us now consider the case of datalog programs with constants. Let P be a datalog
program with constants. For example, suppose that b, c are the only two constants occur-
ring in the program and thatR is a binary relation occurring inP . We transform the problem
into a problem without constants. Specifically, we replace R with nine new relations:

R��, Rb�, Rc�, R�b, R�c, Rbc, Rcb, Rbb, Rcc.

The first one is binary, the next four are unary, and the last four are 0-ary (i.e., are proposi-
tions). Intuitively, a factR(x, y) is represented by the factR��(x, y) if x, y are not in {b, c};
R(b, x) with x not in {b, c} is represented by Rb�(x), and similarly for Rc�, R�b, R�c. The
fact R(b, c) is represented by proposition Rbc(), etc. Using this kind of transformation for
each relation, one translates program P into a constant-free program P ′ such that T is sat-
isfiable by P iff Tw is satisfiable by P ′ for some string w of � or constants occurring in P .
(See Exercise 12.22a.)

Containment

Consider two datalog programs P,P ′ with the same extensional relations edb(P ) and
a target relation T occurring in both programs. We say that P is included in P ′ with
respect to T , denoted P ⊆T P

′, if for each instance I over edb(P ), P(I)(T )⊆ P ′(I)(T ).
The containment problem is undecidable. We prove this by reduction of the containment
problem for context-free languages. The technique is interesting because it exhibits a
correspondence between proof trees of certain datalog programs and derivation trees of
context-free languages.
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We first illustrate the correspondence in an example.

Example 12.5.3 Consider the context-free grammar G = (V ,�,�, S), where V =
{S, T }, S is the start symbol, � = {a, b}, and the set � of production rules is

S→ T a

T → abT | aa.
The corresponding datalog program PG is the program of Example 12.4.1. A proof tree
and its corresponding derivation tree are shown in Fig. 12.3.

We next formalize the correspondence between proof trees and derivation trees.
A context-free grammar is a (�) grammar if the following hold:

(1) G is ε free (i.e., does not have any production of the form X→ ε, where ε
denotes the empty string) and

(2) the start symbol does not occur in any right-hand side of a production.

We use the following:

Fact It is undecidable, given (�) grammars G1,G2, whether L(G1)⊆ L(G2).

For each (�) grammar G, let PG, the corresponding datalog program, be constructed
(similar to Example 12.5.3) as follows: Let G = (V ,�,�, S). We may assume without
loss of generality that V is a set of relation names of arity 2 and � a set of elements from
dom. Then idb(PG)= V and edb(PG)= {R}, where R is a ternary relation. Let x1, x2, . . .

be an infinite sequence of distinct variables. To each production in �,

T → C1 . . . Cn,

we associate a datalog rule

T (x1, xn+1)← A1, . . . , An,

where for each i

• if Ci is a nonterminal T ′, then Ai = T ′(xi, xi+1);

• if Ci is a terminal b, then Ai = R(xi, b, xi+1).

Note that, for any proof tree of a fact S(a1, an) using PG, the sequence of its leaves is
(in this order)

R(a1, b1, a2), . . . , R(an−1, bn−1, an),

for some a2, . . . , an−1 and b1, . . . , bn−1. The connection between derivation trees ofG and
proof trees of PG is shown in the following.



12.5 Static Program Analysis 303

Proposition 12.5.4 Let G be a (�) grammar and PG be the associated datalog pro-
gram constructed as just shown. For each a1, . . . , an, b1, . . . , bn−1, there is a proof tree
of S(a1, an) from PG with leaves R(a1, b1, a2), . . . , R(an−1, bn−1, an) (in this order) iff
b1 . . . bn−1 is in L(G).

The proof of the proposition is left as Exercise 12.25. Now we can show the following:

Theorem 12.5.5 It is undecidable, given P,P ′ (with edb(P ) = edb(P ′)) and T ,
whether P ⊆T P

′.

Proof It suffices to show that

(‡)
for each pair G1,G2 of (�) grammars,

L(G1)⊆ L(G2)⇔ PG1 ⊆S PG2.

Suppose (‡) holds and T containment is decidable. Then we obtain an algorithm to decide
containment of (�) grammars, which contradicts the aforementioned fact.

Let G2,G2 be two (�) grammars. We show here that

L(G1)⊆ L(G2)⇒ PG1 ⊆S PG2.

(The other direction is similar.) Suppose that L(G1)⊆ L(G2). Let I be over edb(PG1) and
S(a1, an) be in PG1(I). Then there exists a proof tree of S(a1, an) from PG1 and I, with
leaves labeled by facts

R(a1, b1, a2), . . . , R(an−1, bn−1, an),

in this order. By Proposition 12.5.4, b1 . . . bn−1 is in L(G1). Because L(G1) ⊆ L(G2),
b1 . . . bn−1 is inL(G2). By the proposition again, there is a proof tree of S(a1, an) from PG2

with leaves R(a1, b1, a2), . . . , R(an−1, bn−1, an), all of which are facts in I. Thus S(a1, an)

is in PG2(I), so PG1 ⊆S PG2.

Note that the datalog programs used in the preceding construction are very particular:
They are essentially chain programs. Intuitively, in a chain program the variables in a rule
body form a chain. More precisely, rules in chain programs are of the form

A0(x0, xn)← A1(x0, x1), A2(x1, x2), . . . , An(xn−1, xn).

The preceding proof can be tightened to show that containment is undecidable even for
chain programs (see Exercise 12.26).

The connection with grammars can also be used to provide an alternate proof of the
decidability of satisfiability; satisfiability can be reduced to the emptiness problem for
context-free languages (see Exercise 12.22c).

Although containment is undecidable, there is a closely related, stronger property
which is decidable—namely, uniform containment. For two programs P,P ′ over the same
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set of intensional and extensional relations, we say that P is uniformly contained in P ′,
denoted P ⊆ P ′, iff for each I over sch(P ), P(I) ⊆ P ′(I). Uniform containment is a
sufficient condition for containment. Interestingly, one can decide uniform containment.
The test for uniform containment uses dependencies studied in Part D and the fundamental
chase technique (see Exercises 12.27 and 12.28).

Boundedness

A key problem for datalog programs (and recursive programs in general) is to estimate the
depth of recursion of a given program. In particular, it is important to know whether for a
given program the depth is bounded by a constant independent of the input. Besides being
meaningful for optimization, this turns out to be an elegant mathematical problem that has
received a lot of attention.

A datalog program P is bounded if there exists a constant d such that for each I over
edb(P ), stage(P, I) ≤ d . Clearly, if a program is bounded it is essentially nonrecursive,
although it may appear to be recursive syntactically. In some sense, it is falsely recursive.

Example 12.5.6 Consider the following two-rule program:

Buys(x, y)← Trendy(x),Buys(z, y) Buys(x, y)← Likes(x, y)

This program is bounded because Buys(z,y) can be replaced in the body by Likes(z,y),
yielding an equivalent recursion-free program. On the other hand, the program

Buys(x, y)← Knows(x, z),Buys(z, y) Buys(x, y)← Likes(x, y)

is inherently recursive (i.e., is not equivalent to any recursion-free program).

It is important to distinguish truly recursive programs from falsely recursive (bounded)
programs. Unfortunately, boundedness cannot be tested.

Theorem 12.5.7 Boundedness is undecidable for datalog programs.

The proof is by reduction of the PCP (see Chapter 2). One can even show that bound-
edness remains undecidable under strong restrictions, such as that the programs that are
considered (1) are constant-free, (2) contain a unique recursive rule, or (3) contain a unique
intensional relation. Decidability results have been obtained for linear programs or chain-
rule programs (see Exercise 12.31).
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query and therefore is expressible in CALC (over finite inputs). What about the converse?
If infinite inputs are allowed, then (by a compactness argument) unboundedness implies
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(x �= y). (We did not consider comparators �=, <,≤, etc. in this chapter.) The question
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unbounded datalog program is expressible in CALC, even on finite structures.
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[AH88].
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Shm87, LM89, KV90c]. Clearly, datalog expresses only monotonic queries, commutes
with homomorphisms of the database (if there are no constants in the program), and can be
evaluated in polynomial time (see also Exercise 12.11). It is natural to wonder if datalog
expresses precisely those queries. The answer is negative. Indeed, [ACY91] shows that the
existence of a path whose length is a perfect square between two nodes is not expressible
in datalog�= (datalog augmented with inequalities x �= y), and so not in datalog. This
is a monotonic, polynomial-time query commuting with homomorphisms. The parallel
complexity of datalog is surveyed in [Kan88].

The function symbols used in logic programming are interpreted over a Herbrand do-
main and are prohibited in datalog. However, it is interesting to incorporate arithmetic func-
tions such as addition and multiplication into datalog. Such functions can also be viewed
as infinite base relations. If these are present, it is possible that the bottom-up evaluation
of a datalog program will not terminate. This issue was first studied in [RBS87], where
finiteness dependencies were introduced. These dependencies can be used to describe how
the finiteness of the range of a set of variables can imply the finiteness of the range of
another variable. [For example, the relation +(x, y, z) satisfies the finiteness dependen-
cies {x, y}❀ {z}, {x, z}❀ {y}, and {y, z}❀ {x}.] Safety of datalog programs with infinite
relations constrained by finiteness dependencies is undecidable [SV89]. Various syntac-
tic conditions on datalog programs that ensure safety are developed in [RBS87, KRS88a,
KRS88b, SV89]. Finiteness dependencies were used to develop a safety condition for the
relational calculus with infinite base relations in [EHJ93]. Safety was also considered in
the context of data functions (i.e., functions whose extent is predefined).

Exercises

Exercise 12.1 Refer to the Parisian Metro database. Give a datalog program that yields, for
each pair of stations (a, b), the stations c such that c is reachable (1) from both a and b; and (2)
from a or b.

Exercise 12.2 Consider a database consisting of the Metro and Cinema databases, plus a
relation Theater-Station giving for each theater the closest metro station. Suppose that you live
near the Odeon metro station. Write a program that answers the query “Near which metro station
can I see a Bergman movie?” (Having spent many years in Los Angeles, you do not like walking,
so your only option is to take the metro at Odeon and get off at the station closest to the theater.)

Exercise 12.3 (Same generation) Consider a binary relation Child_of , where the intended
meaning of Child_of (a, b) is that a is the child of b. Write a datalog program computing the
set of pairs (c, d), where c and d have a common ancestor and are of the same generation with
respect to this ancestor.

Exercise 12.4 We are given two directed graphs Gblack and Gwhite over the same set V of
vertexes, represented as binary relations. Write a datalog program P that computes the set of
pairs (a, b) of vertexes such that there exists a path from a to b where black and white edges
alternate, starting with a white edge.
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Exercise 12.5 Suppose we are given an undirected graph with colored vertexes represented
by a binary relation Color giving the colors of vertexes and a binary relation Edge giving the
connection between them. (Although Edge provides directed edges, we ignore the direction, so
we treat the graph as undirected.) Say that a vertex is good if it is connected to a blue vertex
(blue is a constant) or if it is connected to an excellent vertex. An excellent vertex is a vertex
that is connected to an outstanding vertex and to a red vertex. An outstanding vertex is a vertex
that is connected to a good vertex, an excellent one, and a yellow one. Write a datalog program
that computes the excellent vertexes.

Exercise 12.6 Consider a directed graph G represented as a binary relation. Show a datalog
program that computes a binary relation T containing the pairs (a, b) for which there is a path
of odd length from a to b in G.

Exercise 12.7 Given a directed graph G represented as a binary relation, write a datalog
program that computes the vertexes x such that (1) there exists a cycle of even length passing
through x; (2) there is a cycle of odd length through x; (3) there are even- and odd-length cycles
through x.

Exercise 12.8 Consider the following program P :

R(x, y)←Q(y, x), S(x, y)

S(x, y)←Q(x, y), T (x, z)

T (x, y)←Q(x, z), S(z, y)

Let I be a relation over edb(P ). Describe the output of the program. Now suppose the first rule
is replaced by R(x, y)←Q(y, x). Describe the output of the new program.

Exercise 12.9 Prove Lemma 12.3.1.

Exercise 12.10 Prove that datalog queries are monotone.

Exercise 12.11 Suppose P is some property of graphs definable by a datalog program. Show
that P is preserved under extensions and homomorphisms. That is, if G is a graph satisfying P ,
then (1) every supergraph of G satisfies P and (2) if h is a graph homomorphism, then h(G)
satisfies P .

Exercise 12.12 Show that the following graph properties are not definable by datalog
programs:

(i) The number of nodes is even.

(ii) There is a nontrivial cycle (a trivial cycle is an edge 〈a, a〉 for some vertex a).

(iii) There is a simple path of even length between two specified nodes.

Show that nontrivial cycles can be detected if inequalities of the form x �= y are allowed in rule
bodies.

♠Exercise 12.13 [ACY91] Consider the query perfect square on graphs: Is there a path (not
necessarily simple) between nodes a and b whose length is a perfect square?

(i) Prove that perfect square is preserved under extension and homomorphism.

(ii) Show that perfect square is not expressible in datalog.

Hint: For (ii), consider “words” consisting of simple paths from a to b, and prove a pumping
lemma for words “accepted” by datalog programs.
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Exercise 12.14 Present an algorithm that, given the set of proof trees of depth i with a program
P and instance I, constructs all proof trees of depth i + 1. Make sure that your algorithm
terminates.

Exercise 12.15 Let P be a datalog program, I an instance of edb(P ), and R in idb(P ). Let u
be a vector of distinct variables of the arity of R. Demonstrate that

P(I)(R)= {θR(u) | there is a refutation of ← R(u) using PI and

substitutions θ1, . . . θn such that θ = θ1 ◦ · · · ◦ θn}.
Exercise 12.16 (Substitution lemma) Let PI be a program, g a goal, and θ a substitution. Prove
that if there exists an SLD refutation of θg with PI and ν, there also exists an SLD refutation of
g with PI and θ ◦ ν.

Exercise 12.17 Reprove Theorem 12.3.4 using Tarski’s and Kleene’s theorems stated in Re-
mark 12.3.5.

Exercise 12.18 Prove the “if part” of Theorem 12.4.5.

Exercise 12.19 Prove Lemma 12.4.8.

�Exercise 12.20 (Unification with function symbols) In general logic programming, one can
use function symbols in addition to relations. A term is then either a constant in dom, a variable
in var, or an expression f (t1, . . . , tn), where f is an n-ary function symbol and each ti is a term.
For example, f (g(x, 5), y, f (y, x, x)) is a term. In this context, a substitution θ is a mapping
from a subset of var into the set of terms. Given a substitution θ , it is extended in the natural
manner to include all terms constructed over the domain of θ . Extend the definitions of unifier
and mgu to terms and to atoms permitting terms. Give an algorithm to obtain the mgu of two
atoms.

Exercise 12.21 Prove that Lemma 12.5.1 does not generalize to datalog programs with
constants.

Exercise 12.22 This exercise develops three alternative proofs of the generalization of Theo-
rem 12.5.2 to datalog programs with constants. Prove the generalization by

(a) using the technique outlined just after the statement of the theorem

(b) making a direct proof using as input an instance IC∪{a}, where C is the set of all
constants occurring in the program and a is new, and where each relation in I contains
all tuples constructed using C ∪ {a}

(c) reducing to the emptiness problem for context-free languages.

♠Exercise 12.23 (datalog �=) The language datalog �= is obtained by extending datalog with a
new predicate �= with the obvious meaning.

(a) Formally define the new language.

(b) Extend the least-fixpoint and minimal-model semantics to datalog �=.

� (c) Show that satisfiability remains decidable for datalog �= and that it can be tested in
exponential time with respect to the size of the program.

�Exercise 12.24 Which of the properties in Exercise 12.12 are expressible in datalog �=?

Exercise 12.25 Prove Proposition 12.5.4.
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Exercise 12.26 Prove that containment of chain datalog programs is undecidable. Hint: Mod-
ify the proof of Theorem 12.5.5 by using, for each b ∈ �, a relation Rb such that Rb(x, y) iff
R(x, b, y).

Exercise 12.27 Prove that containment does not imply uniform containment by exhibiting two
programs P,Q over the same edb’s and with S as common idb such that P ⊆S Q but P �⊆Q.

♠Exercise 12.28 (Uniform containment [CK86, Sag88]) Prove that uniform containment of two
datalog programs is decidable.

Exercise 12.29 Prove that each nr-datalog program is bounded.

♠Exercise 12.30 [GMSV87, Var88] Prove Theorem 12.5.7. Hint: Reduce the halting problem
of Turing machines on an empty tape to boundedness of datalog programs. More precisely, have
the edb encode legal computations of a Turing machine on an empty tape, and have the program
verify the correctness of the encoding. Then show that the program is unbounded iff there are
unbounded computations of the machine on the empty tape.

Exercise 12.31 (Boundedness of chain programs) Prove decidability of boundedness for chain
programs. Hint: Reduce testing for boundedness to testing for finiteness of a context-free
language.

♠Exercise 12.32 This exercise demonstrates that datalog is likely to be stronger than positive
first order extended by generalized transitive closure.

(a) [Coo74] Recall that a single rule program (sirup) is a datalog program with one
nontrivial rule. Show that the sirup

R(x)← R(y), R(z), S(x, y, z)

is complete in ptime. (This has been called variously the graph accessibility problem
and the blue-blooded water buffalo problem; a water buffalo is blue blooded only if
both of its parents are.)

(b) [KP86] Show that the in some sense simpler sirup

R(x)← R(y), R(z), T (y, x), T (x, z)

is complete in ptime.
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(c) [Imm87b] The generalized transitive closure operator is defined on relations with
arity 2n so that TC(R) is the output of the datalog program

ans(x1, . . . , x2n)← R(x1, . . . , x2n)

ans(x1, . . . , xn, z1, . . . , zn)← R(x1, . . . , xn, y1, . . . , yn),

ans(y1, . . . , yn, z1, . . . , zn)

Show that the positive first order extended with generalized transitive closure is in
logspace.



13 Evaluation of Datalog

Alice: I don’t mean to sound naive, but isn’t it awfully expensive to answer
datalog queries?

Riccardo: Not if you use the right bag of tricks . . .
Vittorio: . . . and some magical wisdom.

Sergio: Well, there is no real need for magic. We will see that the evaluation is
much easier if the algorithm knows where it is going and takes advantage
of this knowledge.

The introduction of datalog led to a flurry of research in optimization during the late
1980s and early 1990s. A variety of techniques emerged covering a range of different

approaches. These techniques are usually separated into two classes depending on whether
they focus on top-down or bottom-up evaluation. Another key dimension of the techniques
concerns whether they are based on direct evaluation or propose some compilation of the
query into a related query, which is subsequently evaluated using a direct technique.

This chapter provides a brief introduction to this broad family of heuristic techniques.
A representative sampling of such techniques is presented. Some are centered around
an approach known as “Query-Subquery”; these are top down and are based on direct
evaluation. Others, centered around an approach called “magic set rewriting,” are based
on an initial preprocessing of the datalog program before using a fairly direct bottom-up
evaluation strategy.

The advantage of top-down techniques is that selections that form part of the initial
query can be propagated into the rules as they are expanded. There is no direct way to take
advantage of this information in bottom-up evaluation, so it would seem that the bottom-
up technique is at a disadvantage with respect to optimization. A rather elegant conclusion
that has emerged from the research on datalog evaluation is that, surprisingly, there are
bottom-up techniques that have essentially the same running time as top-down techniques.
Exposition of this result is a main focus of this chapter.

Some of the evaluation techniques presented here are intricate, and our main emphasis
is on conveying the essential ideas they use. The discussion is centered around the pre-
sentation of the techniques in connection with a concrete running example. In the cases of
Query-Subquery and magic sets rewriting, we also informally describe how they can be ap-
plied in the general case. This is sufficient to give a precise understanding of the techniques
without becoming overwhelmed by notation. Proofs of the correctness of these techniques
are typically lengthy but straightforward and are left as exercises.

311



312 Evaluation of Datalog

a
a
f
g
h
i
j

up

e
f
m
n
n
o
o

g
m
m
p

flat

f
n
o
m

l
m
g
h
i
p

down

f
f
b
c
d
k

(a) The instance (b) Represented as a graph

e f g h i j k

a b c d

l m n o p

d d duu

d d du u u u u

f

f

f

f

Figure 13.1: Instance I0 for RSG example

13.1 Seminaive Evaluation

The first stop on our tour of evaluation techniques is a strategy for improving the effi-
ciency of the bottom-up technique described in Chapter 12. To illustrate this and the other
techniques, we use as a running example the program “Reverse-Same-Generation” (RSG)
given by

rsg(x, y)← flat(x, y)

rsg(x, y)← up(x, x1), rsg(y1, x1), down(y1, y)

and the sample instance I0 illustrated in Fig. 13.1. This is a fairly simple program, but it
will allow us to present the main features of the various techniques presented throughout
this chapter.

If the bottom-up algorithm of Chapter 12 is used to compute the value of rsg on input
I0, the following values are obtained:

level 0: ∅
level 1: {〈g, f 〉, 〈m, n〉, 〈m, o〉, 〈p,m〉}
level 2: {level 1} ∪ {〈a, b〉, 〈h, f 〉, 〈i, f 〉, 〈j, f 〉, 〈f, k〉}
level 3: {level 2} ∪ {〈a, c〉, 〈a, d〉}
level 4: {level 3}

at which point a fixpoint has been reached. It is clear that a considerable amount of
redundant computation is done, because each layer recomputes all elements of the previous
layer. This is a consequence of the monotonicity of the TP operator for datalog programs P .
This algorithm has been termed the naive algorithm for datalog evaluation. The central idea
of the seminaive algorithm is to focus, to the extent possible, on the new facts generated at
each level and thereby avoid recomputing the same facts.

Consider the facts inferred using the second rule of RSG in the consecutive stages of
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the naive evaluation. At each stage, some new facts are inferred (until a fixpoint is reached).
To infer a new fact at stage i + 1, one must use at least one fact newly derived at stage i.
This is the main idea of seminaive evaluation. It is captured by the following “version” of
RSG, called RSG′:

.1
rsg(x, y)← flat(x, y)

.i+1
rsg (x, y)← up(x, x1),.i

rsg(y1, x1), down(y1, y)

where an instance of the second rule is included for each i ≥ 1. Strictly speaking, this is
not a datalog program because it has an infinite number of rules. On the other hand, it is
not recursive.

Intuitively, .i
rsg contains the facts in rsg newly inferred at the ith stage of the naive

evaluation. To see this, we note a close relationship between the repeated applications of
TRSG and the values taken by the .i

rsg. Let I be a fixed input instance. Then

• for i ≥ 0, let rsgi = T iRSG(I)(rsg) (i.e., the value of rsg after i applications of TRSG

on I); and

• for i ≥ 1, let δirsg = RSG′(I)(.i
rsg) (i.e., the value of .i

rsg when TRSG′ reaches a
fixpoint on I).

It is easily verified for each i ≥ 1 that T i−1
RSG′(I)(.i

rsg)= ∅ and T iRSG′(I)(.i
rsg)= δirsg. Fur-

thermore, for each i ≥ 0 we have

rsgi+1 − rsgi ⊆ δi+1
rsg ⊆ rsgi+1.

Therefore RSG(I)(rsg) = ∪1≤i(δirsg). Furthermore, if j satisfies δ
j
rsg ⊆ ∪i<jδirsg,

then RSG(I)(rsg) = ∪i<jδirsg, that is, only j levels of RSG′ need be computed to find
RSG(I)(rsg). Importantly, bottom-up evaluation of RSG′ typically involves much less re-
dundant computation than direct bottom-up evaluation of RSG.

Continuing with the informal development, we introduce now two refinements that
further reduce the amount of redundant computation. The first is based on the observation
that when executing RSG′, we do not always have δi+1

rsg = rsgi+1 − rsgi. Using I0, we
have 〈g, f 〉 ∈ δ2

rsg but not in rsg2 − rsg1. This suggests that the efficiency can be further
improved by using rsgi − rsgi−1 in place of .i

rsg in the body of the second “rule” of RSG′.
Using a pidgin language that combines both datalog and imperative commands, the new
version RSG′′ is given by{

.1
rsg(x, y) ← flat(x, y)

rsg1 := .1
rsg

}



tempi+1
rsg (x, y) ← up(x, x1),.i

rsg(y1, x1), down(y1, y)

.i+1
rsg := tempi+1

rsg − rsgi

rsgi+1 := rsgi ∪.i+1
rsg




(where an instance of the second family of commands is included for each i ≥ 1).
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The second improvement to reduce redundant computation is useful when a given idb
predicate occurs twice in the same rule. To illustrate, consider the nonlinear version of the
ancestor program:

anc(x, y)← par(x, y)

anc(x, y)← anc(x, z), anc(z, y)

A seminaive “version” of this is{
.1

anc(x, y) ← par(x, y)

anc1 := .1
anc

}



tempi+1
anc (x, y) ← .i

anc(x, z), anc(z, y)

tempi+1
anc (x, y) ← anc(x, z),.i

anc(z, y)

.i+1
anc := tempi+1

anc − anci

anci+1 := anci ∪.i+1
anc




Note here that both .i
anc and anci are needed to ensure that all new facts in the next level

are obtained.
Consider now an input instance consisting of par(1, 2), par(2, 3). Then we have

.1
anc = {〈1, 2〉, 〈2, 3〉}

anc1 = {〈1, 2〉, 〈2, 3〉}
.2

anc = {〈1, 3〉}

Furthermore, both of the rules for temp2
anc will compute the join of tuples 〈1, 2〉 and 〈2, 3〉,

and so we have a redundant computation of 〈1, 3〉. Examples are easily constructed where
this kind of redundancy occurs for at an arbitrary level i > 0 (see Exercise 13.2).

An approach for preventing this kind of redundancy is to replace the two rules for
tempi+1 by

tempi+1(x, y)←.i
anc(x, z), anci−1(z, y)

tempi+1(x, y)← anci(x, z),.i
anc(z, y)

This approach is adopted below.
We now present the seminaive algorithm for the general case. Let P be a datalog

program over edb R and idb T. Consider a rule

S(u)← R1(v1), . . . , Rn(vn), T1(w1), . . . , Tm(wm)

in P , where the Rk’s are edb predicates and the Tj ’s are idb predicates. Construct for each
j ∈ [1,m] and i ≥ 1 the rule
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tempi+1
S (u)← R1(v1), . . . , Rn(vn),

T i1 (w1), . . . , T
i
j−1(wj−1),.

i
Tj
(wj), T

i−1
j+1(wj+1), . . . , T

i−1
m (wm).

Let P i
S represent the set of all i-level rules of this form constructed for the idb predicate S

(i.e., the rules for tempi+1
S , j in [1,m]).

Suppose now that T1, . . . , Tl is a listing of the idb predicates of P that occur in the
body of a rule defining S. We write

P i
S(I, T

i−1
1 , . . . , T i−1

l , T i1 , . . . , T
i
l , .

i
T1
, . . . , .i

Tl
)

to denote the set of tuples that result from applying the rules in P i
S to given values for input

instance I and for the T i−1
j , T ij , and .i

Tj
.

We now have the following:

Algorithm 13.1.1 (Basic Seminaive Algorithm)

Input: Datalog program P and input instance I

Output: P(I)

1. Set P ′ to be the rules in P with no idb predicate in the body;
2. S0 := ∅, for each idb predicate S;
3. .1

S := P ′(I)(S), for each idb predicate S;
4. i := 1;
5. do begin

for each idb predicate S, where T1, . . . , Tl
are the idb predicates involved in rules defining S,

begin
Si := Si−1 ∪.i

S;
.i+1
S := P i

S(I, T
i−1

1 , . . . , T i−1
l , T i1 , . . . , T

i
l , .

i
T1
, . . . , .i

Tl
)− Si;

end;
i := i + 1
end
until .i

S = ∅ for each idb predicate S.
6. s := si, for each idb predicate S.

The correctness of this algorithm is demonstrated in Exercise 13.3. However, it is
still doing a lot of unnecessary work on some programs. We now analyze the structure
of datalog programs to develop an improved version of the seminaive algorithm. It turns
out that this analysis, with simple control of the computation, allows us to know in advance
which predicates are likely to grow at each iteration and which are not, either because they
are already saturated or because they are not yet affected by the computation.

Let P be a datalog program. Form the precedence graph GP for P as follows: Use
the idb predicates in P as the nodes and include edge (R,R′) if there is a rule with head
predicate R′ in which R occurs in the body. P is recursive if GP has a directed cycle. Two
predicates R and R′ are mutually recursive if R = R′ or R and R′ participate in the same
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cycle of GP. Mutual recursion is an equivalence relation on the idb predicates of P , where
each equivalence class corresponds to a strongly connected component of GP. A rule of P
is recursive if the body involves a predicate that is mutually recursive with the head.

We now have the following:

Algorithm 13.1.2 (Improved Seminaive Algorithm)

Input: Datalog program P and edb instance I

Output: P(I)

1. Determine the equivalence classes of idb(P) under mutual recursion.

2. Construct a listing [R1], . . . , [Rn] of the equivalence classes, according to a topo-
logical sort of GP (i.e., so that for each pair i < j there is no path in GP from Rj
to Ri).

3. For i = 1 to n do
Apply Basic Seminaive Algorithm to compute the values of predicates in [Ri],
treating all predicates in [Rj ], j < i, as edb predicates.

The correctness of this algorithm is left as Exercise 13.4.

Linear Datalog

We conclude this discussion of the seminaive approach by introducing a special class of
programs.

Let P be a program. A rule in P with head relation R is linear if there is at most
one atom in the body of the rule whose predicate is mutually recursive with R. P is linear
if each rule in P is linear. We now show how the Improved Seminaive Algorithm can be
simplified for such programs.

Suppose that P is a linear program, and

ρ : R(u)← T1(v1), . . . , Tn(vn)

is a rule in P , where Tj is mutually recursive with R. Associate with this the “rule”

.i+1
R (u)← T1(v1), . . . ,.

i
Tj
(vj), . . . , Tn(vn).

Note that this is the only rule that will be associated by the Improved Seminaive Algorithm
with ρ. Thus, given an equivalence class [Tk] of mutually recursive predicates of P , the
rules for predicates S in [Tk] use only the .i

S, but not the Si. In contrast, as seen earlier,
both the .i

S and Si must be used in nonlinear programs.

13.2 Top-Down Techniques

Consider the RSG program from the previous section, augmented with a selection-based
query:
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rsg(x, y)← flat(x, y)

rsg(x, y)← up(x, x1), rsg(y1, x1), down(y1, y)

query(y)← rsg(a, y)

where a is a constant. This program will be called the RSG query. Suppose that seminaive
evaluation is used. Then each pair of rsg will be produced, including those that are not
used to derive any element of query. For example, using I0 of Fig. 13.1 as input, fact
rsg(f, k)will be produced but not used. A primary motivation for the top-down approaches
to datalog query evaluation is to avoid, to the extent possible, the production of tuples that
are not needed to derive any answer tuples.

For this discussion, we define a datalog query to be a pair (P, q), where P is a datalog
program and q is a datalog rule using relations of P in its body and the new relation query
in its head. We generally assume that there is only one rule defining the predicate query,
and it has the form

query(u)← R(v)

for some idb predicate R.
A fact is relevant to query (P, q) on input I if there is a proof tree for query in which

the fact occurs. A straightforward criterion for improving the efficiency of any datalog
evaluation scheme is to infer only relevant facts. The evaluation procedures developed in
the remainder of this chapter attempt to satisfy this criterion; but, as will be seen, they do
not do so perfectly.

The top-down approaches use natural heuristics to focus attention on relevant facts. In
particular, they use the framework provided by SLD resolution. The starting point for these
algorithms (namely, the query to be answered) often includes constants; these have the
effect of restricting the search for derivation trees and thus the set of facts produced. In the
context of databases without function symbols, the top-down datalog evaluation algorithms
can generally be forced to terminate on all inputs, even when the corresponding SLD-
resolution algorithm does not. In this section, we focus primarily on the query-subquery
(QSQ) framework.

There are four basic elements of this framework:

1. Use the general framework of SLD resolution, but do it set-at-a-time. This permits
the use of optimized versions of relational algebra operations.

2. Beginning with the constants in the original query, “push” constants from goals to
subgoals, in a manner analogous to pushing selections into joins.

3. Use the technique of “sideways information passing” (see Chapter 6) to pass
constant binding information from one atom to the next in subgoals.

4. Use an efficient global flow-of-control strategy.

Adornments and Subqueries

Recall the RSG query given earlier. Consider an SLD tree for it. The child of the root would
be rsg(a, y). Speaking intuitively, not all values for rsg are requested, but rather only those
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with first coordinate a. More generally, we are interested in finding derivations for rsg
where the first coordinate is bound and the second coordinate is free. This is denoted by
the expression rsgbf , where the superscript ‘bf ’ is called an adornment.

The next layer of the SLD tree will have a node holding flat(a, y) and a node holding
up(a, x1), rsg(y1, x1), down(y1, y). Answers generated for the first of these nodes are
given by π2(σ1 = ‘a’(flat)). Answers for the other node can be generated by a left-to-right
evaluation. First the set of possible values for x1 is J = π2(σ1 = ‘a’(up)). Next the possible
values for y1 are given by {y1 | 〈y1, x1〉 ∈ rsg and 〈x1〉 ∈ J } (i.e., the first coordinate
values of rsg stemming from second coordinate values in J ). More generally, then, this
calls for an evaluation of rsgf b, where the second coordinate values are bound by J .
Finally, given y1 values, these can be used with down to obtain y values (i.e., answers
to the query).

As suggested by this discussion, a top-down evaluation of a query in which con-
stants occur can be broken into a family of “subqueries” having the form (Rγ , J ), where
γ is an adornment for idb predicate R, and J is a set of tuples that give values for the
columns bound by γ . Expressions of the form (Rγ , J ) are called subqueries. If the RSG
query were applied to the instance of Fig. 13.1, the first subquery generated would be
(rsgf b, {〈e〉, 〈f 〉}). As we shall see, the QSQ framework is based on a systematic evalu-
ation of subqueries.

Let P be a datalog program and I an input instance. Suppose that R is an idb predicate
and γ is an adornment for R (i.e., a string of b’s and f ’s having length the arity of R). Then
bound(R, γ ) denotes the coordinates of R bound in γ . Let t be a tuple over bound(R, γ ).
Then a completion for t in Rγ is a tuple s such that s[bound(R, γ )] = t and s ∈ P(I)(R).
The answer to a subquery (Rγ , J ) over I is the set of all completions of all tuples in J .

The use of adornments within a rule body is a generalization of the technique of
sideways information passing discussed in Chapter 6. Consider the rule

(*) R(x, y, z)← R1(x, u, v), R2(u,w,w, z), R3(v,w, y, a).

Suppose that a subquery involvingRbfb is invoked. Assuming a left-to-right evaluation, this
will lead to subqueries involving Rbff

1 , Rbffb
2 , and Rbbfb

3 . We sometimes rewrite the rule as

Rbfb(x, y, z)← R
bff
1 (x, u, v), R

bffb
2 (u,w,w, z), R

bbfb
3 (v,w, y, a)

to emphasize the adornments. This is an example of an adorned rule. As we shall see, the
adornments of idb predicates in rule bodies shall be used to guide evaluations of queries
and subqueries. It is common to omit the adornments of edb predicates.

The general algorithm for adorning a rule, given an adornment for the head and an
ordering of the rule body, is as follows: (1) All occurrences of each bound variable in
the rule head are bound, (2) all occurrences of constants are bound, and (3) if a variable
x occurs in the rule body, then all occurrences of x in subsequent literals are bound.
A different ordering of the rule body would yield different adornments. In general, we
permit different orderings of rule bodies for different adornments of a given rule head. (A
generalization of this technique is considered in Exercise 13.19.)

The definition of adorned rule also applies to situations in which there are repeated
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variables or constants in the rule head (see Exercise 13.9). However, adornments do not
capture all of the relevant information that can arise as the result of repeated variables
or constants that occur in idb predicates in rule bodies. Mechanisms for doing this are
discussed in Section 13.4.

Supplementary Relations and QSQ Templates

A key component of the QSQ framework is the use of QSQ templates which store appropri-
ate information during intermediate stages of an evaluation. Consider again the preceding
rule (*), and imagine attempting to evaluate the subquery (Rbfb, J ). This will result in calls
to the generalized queries (Rbff

1 , π1(J )), (R
bffb
2 ,K), and (Rbbfb

3 , L) for some relations K
and L that depend on the evaluation of the preceding queries. Importantly, note that rela-
tion K relies on values passed from both J and R1, and L relies on values passed from
R1 and R2. A QSQ template provides data structures that will remember all of the values
needed during a left-to-right evaluation of a subquery.

To do this, QSQ templates rely on supplementary relations. A total of n+ 1 supple-
mentary relations are associated to a rule body with n atoms. For example, the supplemen-
tary relations sup0, . . . , sup3 for the rule (*) with head adorned by Rbfb are

Rbfb(x, y, z)← R
bff
1 (x, u, v), R

bffb
2 (u,w,w, z), R

bbfb
3 (v,w, y, a)

↑ ↑ ↑ ↑
sup0[x, z] sup1[x, z, u, v] sup2[x, z, v,w] sup3[x, y, z]

Note that variables serve as attribute names in the supplementary relations. Speaking in-
tuitively, the body of a rule may be viewed as a process that takes as input tuples over the
bound attributes of the head and produces as output tuples over the variables (bound and
free) of the head. This determines the attributes of the first and last supplementary relations.
In addition, a variable (i.e., an attribute name) is in some supplementary relation if it is has
been bound by some previous literal and if it is needed in the future by some subsequent
literal or in the result.

More formally, for a rule body with atoms A1, . . . , An, the set of variables used as
attribute names for the ith supplementary relation is determined as follows:

• For the 0th (i.e., zeroth) supplementary relation, the attribute set is the set X0 of
bound variables of the rule head; and for the last supplementary relation, the attribute
set is the set Xn of variables in the rule head.

• For i ∈ [1, n− 1], the attribute set of the ith supplementary relation is the set Xi of
variables that occur both “before” Xi (i.e., occur in X0, A1, . . . , Ai) and “after” Xi
(i.e., occur in Ai+1, . . . , An,Xn).

The QSQ template for an adorned rule is the sequence (sup0, . . . , supn) of relation
schemas for the supplementary relations of the rule. During the process of QSQ query
evaluation, relation instances are assigned to these schemas; typically these instances
repeatedly acquire new tuples as the algorithm runs. Figure 13.2 shows the use of QSQ
templates in connection with the RSG query.
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sup1
0[x] sup1

1[x, y] sup3
0[x] sup3

1[x, x1] sup3
2[x, y1] sup3

3[x, y]

flat(x, y) up(x, x1), rsgfb(y1, x1), down(y1, y)

rsgbf(x, y) rsgbf(x, y)

a a a
a

a ae
f

g b

sup2
0[y] sup2

1[x, y] sup4
0[y] sup4

1[y, y1] sup4
2[y, x1] sup4

3[x, y]

flat(x, y) down(y1, y), rsgbf(y1, x1), up(x, x1)

rsg fb(x, y) rsg fb(x, y)

e
f

e
f

f
f

l
m

g f

input_rsgbf

a e
f

a b g f

input_rsg fb ans_rsgbf ans_rsg fb

Figure 13.2: Illustration of QSQ framework

The Kernel of QSQ Evaluation

The key components of QSQ evaluation are as follows. Let (P, q) be a datalog query and
let I be an edb instance. Speaking conceptually, QSQ evaluation begins by constructing
an adorned rule for each adornment of each idb predicate in P and for the query q. In
practice, the construction of these adorned rules can be lazy (i.e., they can be constructed
only if needed during execution of the algorithm). Let (P ad, qad) denote the result of this
transformation.

The relevant adorned rules for the RSG query are as follows:

1. rsgbf (x, y)← flat(x, y)

2. rsg fb(x, y)← flat(x, y)
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3. rsgbf (x, y)← up(x, x1), rsg fb(y1, x1), down(y1, y)

4. rsg fb(x, y)← down(y1, y), rsgbf (y1, x1), up(x, x1).

Note that in the fourth rule, the literals of the body are ordered so that the binding of y in
down can be “passed” via y1 to rsg and via x1 to up.

A QSQ template is constructed for each relevant adorned rule. We denote the j th

(counting from 0) supplementary relation of the ith adorned rule as sup ij . In addition, the
following relations are needed and will serve as variables in the QSQ evaluation algorithm:

(a) for each idb predicate R and relevant adornment γ the variable ans_Rγ , with
same arity as R;

(b) for each idb predicate R and relevant adornment γ , the variable input_Rγ with
same arity as bound(R, γ ) (i.e., the number of b’s occurring in γ ); and

(c) for each supplementary relation sup ij , the variable sup ij .

Intuitively, input_Rγ will be used to form subqueries (Rγ , input_Rγ ). The completion
of tuples in input_Rγ will go to ans_Rγ . Thus ans_Rγ will hold tuples that are in P(I)(R)
and were generated from subqueries based on Rγ .

A QSQ algorithm begins with the empty set for each of the aforementioned relations.
The query is then used to initialize the process. For example, the rule

query(y)← rsg(a, y)

gives the initial value of {〈a〉} to input_rsgbf . In general, this gives rise to the subquery
(Rγ , {t}), where t is constructed using the set of constants in the initial query.

There are essentially four kinds of steps in the execution. Different possible orderings
for these steps will be considered. The first of these is used to initialize rules.

(A) Begin evaluation of a rule: This step can be taken whenever there is a rule with
head predicate Rγ and there are “new” tuples in a variable input_Rγ that have not yet
been processed for this rule. The step is to add the “new” tuples to the 0th supplementary
relation for this rule. However, only “new” tuples that unify with the head of the rule are
added to the supplementary relation. A “new” tuple in input_Rγ might fail to unify with
the head of a rule defining R if there are repeated variables or constants in the rule head
(see Exercise 13.9).

New tuples are generated in supplementary relations sup ij in two ways: Either some
new tuples have been obtained for sup ij−1 (case B); or some new tuples have been obtained
for the idb predicate occurring between sup ij−1 and sup ij (case C).

(B) Pass new tuples from one supplementary relation to the next: This step can be taken
whenever there is a set T of “new” tuples in a supplementary variable sup ij−1 that have not
yet been processed, and sup ij−1 is not the last supplementary relation of the corresponding
rule. Suppose that Aj is the atom in the rule immediately following sup ij−1.
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Two cases arise:

(i) Aj is Rγ (u) for some edb predicate R. Then a combination of joins and pro-
jections on R and T is used to determine the appropriate tuples to be added to
sup ij .

(ii) Aj is Rγ (u) for some idb predicate R. Note that each of the bound variables in
γ occurs in sup ij−1. Two actions are now taken.

(a) A combination of joins and projections on ans_Rγ (the current value
for R) and T is used to determine the set T ′ of tuples to be added to
sup ij .

(b) The tuples in T [bound(R, γ )] − input_Rγ are added to input_Rγ .

(C) Use new idb tuples to generate new supplementary relation tuples: This step is
similar to the previous one but is applied when “new” tuples are added to one of the idb
relation variables ans_Rγ . In particular, suppose that some atom Aj with predicate Rγ

occurs in some rule, with surrounding supplementary variables sup ij−1 and sup ij . In this
case, use join and projection on all tuples in sup ij−1 and the “new” tuples of ans_Rγ to
create new tuples to be added to sup ij .

(D) Process tuples in the final supplementary relation of a rule: This step is used to
generate tuples corresponding to the output of rules. It can be applied when there are “new”
tuples in the final supplementary variable supin of a rule. Suppose that the rule predicate is
Rγ . Add the new tuples in supin to ans_Rγ .

Example 13.2.1 Figure 13.2 illustrates the data structures and “scratch paper” relations
used in the QSQ algorithm, in connection with the RSG query, as applied to the instance of
Fig. 13.1. Recall the adorned version of the RSG query presented on page 321. The QSQ
templates for these are shown in Fig. 13.2. Finally, the scratch paper relations for the input-
and ans-variables are shown.

Figure 13.2 shows the contents of the relation variables after several steps of the
QSQ approach have been applied. The procedure begins with the insertion of 〈a〉 into
input_rsgbf ; this corresponds to the rule

query(y)← rsg(a, y)

Applications of step (A) place 〈a〉 into the supplementary variables sup1
0 and sup3

0. Step
(B.i) then yields 〈a, e〉 and 〈a, f 〉 in sup3

1. Because ans_rsgf b is empty at this point,
step (B.ii.a) does not yield any tuples for sup3

2. However, step (B.ii.b) is used to insert 〈e〉
and 〈f 〉 into input_rsgf b. Application of steps (B) and (D) on the template of the second
rule yield 〈g, f 〉 in ans_rsgf b. Application of steps (C), (B), and (D) on the template
of the third rule now yield the first entry in ans_rsgbf . The reader is invited to extend
the evaluation to its conclusion (see Exercise 13.10). The answer is obtained by applying
π2σ 1 = ‘a’ to the final contents of ans_rsgbf .
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Global Control Strategies

We have now described all of the basic building blocks of the QSQ approach: the use of
QSQ templates to perform information passing both into rules and sideways through rule
bodies, and the three classes of relations used. A variety of global control strategies can
be used for the QSQ approach. The most basic strategy is stated simply: Apply steps (A)
through (D) until a fixpoint is reached. The following can be shown (see Exercise 13.12):

Theorem 13.2.2 Let (P, q) be a datalog query. For each input I, any evaluation of QSQ
on (P ad, qad) yields the answer of (P, q) on I.

We now present a more specific algorithm based on the QSQ framework. This algo-
rithm, called QSQ Recursive (QSQR) is based on a recursive strategy. To understand the
central intuition behind QSQR, suppose that step (B) described earlier is to be performed,
passing from supplementary relation supij−1 across an idb predicate Rγ to supplementary
relation supij . This may lead to the introduction of new tuples into supij by step (B.ii.a) and
to the introduction of new tuples into input_Rγ by step (B.ii.b). The essence of QSQR is
that it now performs a recursive call to determine the Rγ values corresponding to the new
tuples added to input_Rγ , before applying step (B) or (D) to the new tuples placed into
supij .

We present QSQR in two steps: first a subroutine and then the recursive algorithm
itself. During processing in QSQR, the global state includes values for ans_Rγ and
input_Rγ for each idb predicate R and relevant adornment γ . However, the supplementary
relations are not global—local copies of the supplementary relations are maintained by
each call of the subroutine.

Subroutine Process subquery on one rule

Input: A rule for adorned predicate Rγ , input instance I, a QSQR “state” (i.e., set of values
for the input- and ans-variables), and a set T ⊆ input_Rγ . (Intuitively, the tuples in T
have not been considered with this rule yet).

Action:

1. Remove from T all tuples that do not unify with (the appropriate coordinates of)
the head of the rule.

2. Set sup0 := T . [This is step (A) for the tuples in T .]

3. Proceed sideways across the body A1, . . . , An of the rule to the final supplemen-
tary relation supn as follows:
For each atom Aj

(a) If Aj has edb predicate R′, then apply step (B.i) to populate supj .
(b) If Aj has idb predicate R′δ, then apply step (B.ii) as follows:

(i) Set S := supj−1[bound(R′, δ)] − input_R′δ.
(ii) Set input_R′δ := input_R′δ ∪ S. [This is step (B.ii.b).]

(iii) (Recursively) call algorithm QSQR on the query (R′δ, S).
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[This has the effect of invoking step (A) and its consequences
for the tuples in S.]

(iv) Use supj−1 and the current value of global variable ans_R′δ
to populate supj . [This includes steps (B.ii.a) and (C).]

4. Add the tuples produced for supn into the global variable ans_Rγ . [This is step
(D).]

The main algorithm is given by the following:

Algorithm 13.2.3 (QSQR)

Input: A query of the form (Rγ , T ), input instance I, and a QSQR “state” (i.e., set of values
for the input- and ans-variables).

Procedure:

1. Repeat until no new tuples are added to any global variable:
Call the subroutine to process subquery (Rγ , T ) on each rule defining R.

Suppose that we are given the query

query(u)← R(v)

Let γ be the adornment of R corresponding to v, and let T be the singleton relation
corresponding to the constants in v. To find the answer to the query, the QSQR algorithm is
invoked with input (Rγ , T ) and the global state where input_Rγ = T and all other input-
and ans-variables are empty. For example, in the case of the rsg program, the algorithm is
first called with argument (rsgbf , {〈a〉}) , and in the global state input_rsgbf = {〈a〉}. The
answer to the query is obtained by performing a selection and projection on the final value
of ans_Rγ .

It is straightforward to show that QSQR is correct (Exercise 13.12).

13.3 Magic

An exciting development in the field of datalog evaluation is the emergence of techniques
for bottom-up evaluation whose performance rivals the efficiency of the top-down tech-
niques. This family of techniques, which has come to be known as “magic set” techniques,
simulates the pushing of selections that occurs in top-down approaches. There are close
connections between the magic set techniques and the QSQ algorithm. The magic set tech-
nique presented in this section simulates the QSQ algorithm, using a datalog program that
is evaluated bottom up. As we shall see, the magic sets are basically those sets of tuples
stored in the relations input_Rγ and supij of the QSQ algorithm. Given a datalog query
(P, q), the magic set approach transforms it into a new query (Pm, qm) that has two im-
portant properties: (1) It computes the same answer as (P, q), and (2) when evaluated using
a bottom-up technique, it produces only the set of facts produced by top-down approaches
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rsgbf (x, y) ← input_rsgbf (x), flat(x, y)(s1.1)

rsgf b(x, y) ← input_rsgf b(y), flat(x, y)(s2.1)

sup3
1(x, x1) ← input_rsgbf (x), up(x, x1)(s3.1)

sup3
2(x, y1) ← sup3

1(x, x1), rsgf b(y1, x1)(s3.2)

rsgbf (x, y) ← sup3
2(x, y1), down(y1, y)(s3.3)

sup4
1(y, y1) ← input_rsgf b(y), down(y1, y)(s4.1)

sup4
2(y, x1) ← sup4

1(y, y1), rsgbf (y1, x1)(s4.2)

rsgf b(x, y) ← sup4
2(y, x1), up(x, x1)(s4.3)

input_rsgbf (x1) ← sup3
1(x, x1)(i3.2)

input_rsgf b(y1)← sup4
1(y, y1)(i4.2)

input_rsgbf (a) ←(seed)

query(y) ← rsgbf (a, y)(query)

Figure 13.3: Transformation of RSG query using magic sets

such as QSQ. In particular, then, (Pm, qm) incorporates the effect of “pushing” selections
from the query into bottom-up computations, as if by magic.

We focus on a technique originally called “generalized supplementary magic”; it is
perhaps the most general magic set technique for datalog in the literature. (An earlier
form of magic is considered in Exercise 13.18.) The discussion begins by explaining how
the technique works in connection with the RSG query of the previous section and then
presents the general algorithm.

As with QSQ, the starting point for magic set algorithms is an adorned datalog query
(P ad, qad). Four classes of rules are generated (see Fig. 13.3). The first consists of a family
of rules for each rule of the adorned program Pad . For example, recall rule (3) (see p. 321)
of the adorned program for the RSG query presented in the previous section:

rsgbf (x, y)← up(x, x1), rsgf b(y1, x1), down(y1, y).

We first present a primitive family of rules corrresponding to that rule, and then apply some
optimizations.
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sup3
0(x) ← input_rsgbf (x)(s3.0’)

sup3
1(x, x1)← sup3

0(x), up(x, x1)(s3.1’)

sup3
2(x, y1)← sup3

1(x, x1), rsgf b(y1, x1)(s3.2)

sup3
3(x, y) ← sup3

2(x, y1), down(y1, y)(s3.3’)

rsgbf (x, y) ← sup3
3(x, y)(S3.4’)

Rule (s3.0’) corresponds to step (A) of the QSQ algorithm; rules (s3.1’) and (s3.3’) cor-
respond to step (B.i); rule (s3.2) corresponds to steps (B.ii.a) and (C); and rule (s3.4’)
corresponds to step (D). In the literature, the predicate input_rsgf b has usually been de-
noted as magic_rsgf b and supij as supmagicij . We use the current notation to stress the
connection with the QSQ framework. Note that the predicate rsgbf here plays the role of
ans_rsgbf there.

As can be seen by the preceding example, the predicates sup3
0 and sup3

3 are essentially
redundant. In general, if the ith rule defines Rγ , then the predicate supi0 is eliminated, with
input_Rγ used in its place to eliminate rule (3.0’) and to form

(s3.1) sup3
1(x, x1)← input_rsgbf (x), up(x, x1).

Similarly, the predicate of the last supplementary relation can be eliminated to delete rule
(s3.4’) and to form

(s3.3) rsgbf (x, y)← sup3
2(x, y1), down(y1, y).

Therefore the set of rules (s3.0’) through (s3.4’) may be replaced by (s3.1), (s3.2), and
(s3.3). Rules (s4.1), (s4.2), and (s4.3) of Fig. 13.3 are generated from rule (4) of the adorned
program for the RSG query (see p. 321). (Recall how the order of the body literals in that
rule are reversed to pass bounding information.) Finally, rules (s1.1) and (s2.1) stem from
rules (1) and (2) of the adorned program.

The second class of rules is used to provide values for the input predicates [i.e.,
simulating step (B.ii.b) of the QSQ algorithm]. In the RSG query, one rule for each of
input_rsgbf and input_rsgf b is needed:

input_rsgbf (x1)← sup3
1(x, x1)(i3.2)

input_rsgf b(y1)← sup4
1(y, y1).(i4.2)

Intuitively, the first rule comes from rule (s3.2). In other words, it follows from the second
atom of the body of rule (3) of the original adorned program (see p. 321). In general, an
adorned rule with k idb atoms in the body will generate k input rules of this form.

The third and fourth classes of rules include one rule each; these initialize and conclude
the simulation of QSQ, respectively. The first of these acts as a “seed” and is derived from
the initial query. In the running example, the seed is

input_rsgbf (a)← .
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The second constructs the answer to the query; in the example it is

query(y)← rsgbf (a, y).

From this example, it should be straightforward to specify the magic set rewriting of an
adorned query (P ad, qad) (see Exercise 13.16a).

The example showed how the “first” and “last” supplementary predicates sup3
0 and

sup3
4 were redundant with input_rsgbf and rsgbf , respectively, and could be eliminated.

Another improvement is to merge consecutive sequences of edb atoms in rule bodies as
follows. For example, consider the rule

(i) Rγ (u)← R
γ1
1 (u1), . . . , R

γn
n (un)

and suppose that predicate Rk is the last idb relation in the body. Then rules (si.k), . . . ,
(si.n) can be replaced with

(si.k′′) Rγ (u)← supik−1(vk−1), R
γk
k (uk), R

γk+1
k+1 (uk+1), . . . , R

γn
n (un).

For example, rules (s3.2) and (s3.3) of Fig. 13.3 can be replaced by

(s3.2′′) rsgbf (x, y)← sup3
1(x, x1), rsgf b(y1, x1), down(y1, y).

This simplification can also be used within rules. Suppose that Rk and Rl are idb
relations with only edb relations occurring in between. Then rules (i.k), . . . , (i.l − 1) can
be replaced with

(si.k′′) supil−1(vl−1)← supik−1(vk−1), R
γk
k (uk), R

γk+1
k+1 (uk+1), . . . , R

γl−1
l−1 (ul−1).

An analogous simplification can be applied if there are multiple edb predicates at the
beginning of the rule body.

To summarize the development, we state the following (see Exercise 13.16):

Theorem 13.3.1 Let (P, q) be a query, and let (Pm, qm) be the query resulting from the
magic rewriting of (P, q). Then

(a) The answer computed by (Pm, qm) on any input instance I is identical to the
answer computed by (P, q) on I.

(b) The set of facts produced by the Improved Seminaive Algorithm of (Pm, qm) on
input I is identical to the set of facts produced by an evaluation of QSQ on I.

13.4 Two Improvements

This section briefly presents two improvements of the techniques discussed earlier. The
first focuses on another kind of information passing resulting from repeated variables
and constants occurring in idb predicates in rule bodies. The second, called counting, is
applicable to sets of data and rules having certain acyclicity properties.
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Repeated Variables and Constants in Rule Bodies (by Example)

Consider the program Pr :

T (x, y, z) ← R(x, y, z)(1)

T (x, y, z) ← S(x, y,w), T (w, z, z)(2)

query(y, z)← T (1, y, z)

Consider as input the instance I1 shown in Fig. 13.4(a). The data structures for a QSQ
evaluation of this program are shown in Fig. 13.4(b). (The annotations ‘$2 = $3’, ‘$2 = $3
= 4’, etc., will be explained later.)

A magic set rewriting of the program and query yields

T bff (x, y, z) ← input_T bff (x), R(x, y, z)

sup2
1(x, y,w) ← input_T bff (x), S(x, y,w)

T bff (x, y, z) ← sup2
1(x, y,w), T

bff (w, z, z)

input_T bff (w)← sup2
1(x, y,w)

input_T bff (1) ←

query(y, z) ← T bff (1, y, z).

On input I1, the query returns the empty instance. Furthermore, the SLD tree for this
query on I1 shown in Fig. 13.5, has only 9 goals and a total of 13 atoms, regardless of the
value of n. However, both the QSQ and magic set approach generate a set of facts with size
proportional to n (i.e., to the size of I1).

Why do both QSQ and magic sets perform so poorly on this program and query? The
answer is that as presented, neither QSQ nor magic sets take advantage of restrictions
on derivations resulting from the repeated z variable in the body of rule (2). Analogous
examples can be developed for cases where constants appear in idb atoms in rule bodies.

Both QSQ and magic sets can be enhanced to use such information. In the case of
QSQ, the tuples added to supplementary relations can be annotated to carry information
about restrictions imposed by the atom that “caused” the tuple to be placed into the leftmost
supplementary relation. This is illustrated by the annotations in Fig. 13.4(b). First consider
the annotation ‘$2 = $3’ on the tuple 〈3〉 in input_T bff . This tuple is included into input_
T bff because 〈1, 2, 3〉 is in sup2

1, and the next atom considered is T bff (w, z, z). In particular,
then, any valid tuple (x, y, z) resulting from 〈3〉 must have second and third coordinates
equal. The annotation ‘$2 = $3’ is passed with 〈3〉 into sup1

0 and sup2
0.

Because variable y is bound to 4 in the tuple 〈3, 4, 5〉 in sup2
1, the annotation ‘$2 =

$3’ on 〈3〉 in sup2
0 “transforms” into ‘$3 = 4’ on this new tuple. This, in turn, implies the

annotation ‘$2 = $3 = 4’ when 〈5〉 is added to input_T bff and to both sup1
0 and sup2

0.
Now consider the tuple 〈5〉 in sup1

0, with annotation ($2 = $3 = 4). This can generate a
tuple in sup1

1 only if 〈5, 4, 4〉 is in R. For input I1 this tuple is not in R, and so the annotated
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S

A B

1 2
3 4

R

A B C C

3
5

5 6
5 6

6
7

5 6 8

I1(R)

..
.

5 6 n

(a)  Sample input instance I1

I1(S)

sup1
0[x] sup1

1[x, y, z]

R(x, y, z)

Tbff(x, y, z)

5 6
5 6

6
7

5 6 8

..
.

5 6 n

1
3  ($2 = $3)
5  ($2 = $3 = 4)

input_Tbff

1
3  ($2 = $3)
5  ($2 = $3 = 4)

(b)  QSQ evaluation

sup2
1[x, y, w] sup2

2[x, y, z]

Tbff(x, y, z)

3
3

ans_Tbff

1

sup2
0[x]

3  ($2 = $3)
5  ($2 = $3 = 4)

1
4
2

5  ($3 = 4)
3

5 6
5 6

6
7

..
.

5 6 n
3 4 6

S(x, y, w), Tbff(w, z, z)

4 6

Figure 13.4: Behavior of QSQ on program with repeated variables
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← T(1, y, z)

← R(1, y, z)

×

← S(1, y, w1), T(w1, z, z)

← T(3, z, z)

← R(3, z, z)

×

← S(3, z, w2), T(w2, z, z)

← T(5, 4, 4)

← R(5, 4, 4)

×

← S(5, 4, w3), T(w3, 4, 4)

×

Figure 13.5: Behavior of SLD on program with repeated variables

tuple 〈5〉 in sup1
0 generates nothing (even though in the original QSQ framework many

tuples are generated). Analogously, because there is no tuple 〈5, 4, w〉 in S, the annotated
tuple 〈5〉 of sup2

0 does not generate anything in sup2
1. This illustrates how annotations can

be used to restrict the facts generated during execution of QSQ.
More generally, annotations on tuples are conjunctions of equality terms of the form

‘$i = $j ’ and ‘$i = a’ (where a is a constant). During step (B.ii.b) of QSQ, annotations
are associated with new tuples placed into relations input_Rγ . We permit the same tuple
to occur in input_Rγ with different annotations. This enhanced version of QSQ is called
annotated QSQ. The enhancement correctly produces all answers to the initial query, and
the set of facts generated now closely parallels the set of facts and assignments generated
by the SLD tree corresponding to the QSQ templates used.

The magic set technique can also be enhanced to incorporate the information cap-
tured by the annotations just described. This is accomplished by an initial preprocessing
of the program (and query) called “subgoal rectification.” Speaking loosely, a subgoal cor-
responding to an idb predicate is rectified if it has no constants and no repeated variables.
Rectified subgoals may be formed from nonrectified ones by creating new idb predicates
that correspond to versions of idb predicates with repeated variables and constants. For
example, the following is the result of rectifying the subgoals of the program Pr :

T (x, y, z) ← R(x, y, z)

T (x, y, z) ← S(x, y,w), T$2=$3(w, z)

T$2=$3(x, z)← R(x, z, z)

T$2=$3(x, z)← S(x, z,w), T$2=$3(w, z)



13.4 Two Improvements 331

query(y, z)← T (1, y, z)

query(z, z) ← T$2=$3(1, z).

It is straightforward to develop an iterative algorithm that replaces an arbitrary datalog
program and query with an equivalent one, all of whose idb subgoals are rectified (see Exer-
cise 13.20). Note that there may be more than one rule defining the query after rectification.

The magic set transformation is applied to the rectified program to obtain the final
result. In the preceding example, there are two relevant adornments for the predicate T$2=$3
(namely, bf and bb).

The following can be verified (see Exercise 13.21):

Theorem 13.4.1 (Informal) The framework of annotated QSQ and the magic set trans-
formation augmented with subgoal rectification are both correct. Furthermore, the set of
idb predicate facts generated by evaluating a datalog query with either of these techniques
is identical to the set of facts occurring in the corresponding SLD tree.

A tight correspondence between the assignments in SLD derivation trees and the
supplementary relations generated both by annotated QSQ and rectified magic sets can be
shown. The intuitive conclusion drawn from this development is that top-down and bottom-
up techniques for datalog evaluation have essentially the same efficiency.

Counting (by Example)

We now present a brief sketch of another improvement of the magic set technique. It is
different from the previous one in that it works only when the underlying data set is known
to have certain acyclicity properties.

Consider evaluating the following SG query based on the Same-Generation program:

sg(x, y) ← flat(x, y)(1)

sg(x, y) ← up(x, x1), sg(x1, y1), down(y1, y)(2)

query(y)← sg(a, y)

on the input Jn given by

Jn(up) = {〈a, bi〉 | i ∈ [1, n]} ∪ {〈bi, cj〉 | i, j ∈ [1, n]}
Jn(flat) = {〈ci, dj〉 | i, j ∈ [1, n]}
Jn(down)= {〈di, ej〉 | i, j ∈ [1, n]} ∪ {〈ei, f 〉 | i ∈ [1, n]}.

Instance J2 is shown in Fig. 13.6.
The completed QSQ template on input J2 for the second rule of the SG query is shown

in Fig. 13.7(a). (The tuples are listed in the order in which QSQR would discover them.)
Note that on input Jn both sup2

1 and sup2
2 would contain n(n+ 1) tuples.

Consider now the proof tree of SG having root sg(a, f ) shown in Fig. 13.8 (see
Chapter 12). There is a natural correspondence of the children at depth 1 in this tree with the
supplementary relation atoms sup2

0(a), sup2
1(a, b1), sup2

2(a, e1), and sup2
3(a, f ) generated
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c1 c2

b1 b2

a

d1 d2

e1 e2

f

flat

up

up down

down

Figure 13.6: Instance J2 for counting

by QSQ; and between the children at depth 2 with sup2
0(b1), sup2

1(b1, c1), sup2
2(b1, d1), and

sup2
3(b1, e1).
A key idea in the counting technique is to record information about the depths at which

supplementary relation atoms occur. In some cases, this permits us to ignore some of the
specific constants present in the supplementary atoms. You will find that this is illustrated
in Fig. 13.7(b). For example, we show atoms count_sup2

0(1, a), count_sup2
1(1, b1), count_

sup2
2(1, e1), and count_sup2

3(1, f ) that correspond to the supplementary atoms sup2
0(a),

sup2
1(a, b1), sup2

2(a, e1), and sup2
3(a, f ). Note that, for example, count_sup2

1(2, c1) corre-
sponds to both sup2

1(b1, c1) and sup2
1(b2, c1).

More generally, the modified supplementary relation atoms hold an “index” that indi-
cates a level in a proof tree corresponding to how the atom came to be created. Because
of the structure of SG, and assuming that the up relation is acyclic, these modified supple-
mentary relations can be used to find query answers. Note that on input Jn, the relations
countsup2′

1 and count_sup2′
2 hold 2n tuples each rather than n(n+ 1), as in the original QSQ

approach.
We now describe how the magic set program associated with the SG query can be

transformed into an equivalent program (on acyclic input) that uses the indexes suggested
by Fig. 13.7(b). The magic set rewriting of the SG query is given by

sgbf (x, y) ← input_sgbf (x), flat(x, y)(s1.1)

sup2
1(x, x1)← input_sgbf (x), up(x, x1)(s2.1)

sup2
2(x, y1)← sup2

1(x, x1), sgbf (x1, y1)(s2.2)

sgbf (x, y) ← sup2
2(x, y1), down(y1, y)(s2.3)
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sup2
0[x] sup2

1[x, x1] sup2
2[x, y1] sup2

3[x, y]

up(x, x1), sgbf(x1, y1), down(y1, y)

sgbf(x, y)

a
b1

b2

a
a
b1

b1

b2

b2

b1

b2

c1

c2

c1

c2

b1

b1

b2

b2

a
a

d1

d2

d1

d2

e1

e2

b1

b1

b2

b2

a

e1

e2

e1

e2

f

(a)  Completed QSQ template for sgbf on input J2

count_sup2
0[d, x] count_sup2

1[d, x1] count_sup2
2[d, y1] count_sup2

3[d, y]

up(x, x1), sgbf(x1, y1), down(y1, y)

sgbf(x, y)

1
2
2

1
1
2
2

b1

b2

c1

c2

2
2
1
1

d1

d2

e1

e2

2
2
1

e1

e2

f

(b)  Alternative QSQ “template,” using indices

a
b1

b2

Figure 13.7: Illustration of intuition behind counting

input_sgbf (x1)← sup2
1(x, x1)(i2.2)

input_sgbf (a) ←(seed)

query(y) ← sgbf (a, y).(query)

The counting version of this is now given. (In other literature on counting, the seed is
initialized with 0 rather than 1.)
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sg(a, f)

down(e1, f)up(a, b1) sg(b1, e1)

down(d1, e1)up(b1, c1) sg(c1, d1)

flat(c1, d1)

Figure 13.8: A proof tree for sg(a, f )

count_sgbf (I, y) ← count_input_sgbf (I, x), flat(x, y)(c-s1.1)

count_sup2
1(I, x1) ← count_input_sgbf (I, x), up(x, x1)(c-s2.1)

count_sup2
2(I, y1) ← count_sup2

1(I, x1), count_sgbf (I + 1, y1)(c-s2.2)

count_sgbf (I, y) ← count_sup2
2(I, y1), down(y1, y)(c-s2.3)

count_input_sgbf (I + 1, x1)← count_sup2
1(I, x1)(c-i2.2)

count_input_sgbf (1, a) ←(c-seed)

query(y) ← count_sgbf (1, y)(c-query)

In the preceding, expressions such as I + 1 are viewed as a short hand for using a variable
J in place of I + 1 and including J = I + 1 in the rule body.

In the counting version, the first coordinate of each supplementary relation keeps track
of a level in a proof tree rather than a specific value. Intuitively, when “constructing”
a sequence of supplementary atoms corresponding to a given level of a proof tree, each
idb atom used must have been generated from the next deeper level. This is why count_
sgbf (I + 1, y1) is used in rule (c-s2.2). Furthermore, rule (c-i2.2) initiates the “construc-
tion” corresponding to a new layer of the proof tree.

The counting program of the preceding example is not safe, in the sense that on
some inputs the program may produce an infinite set of tuples in some predicates (e.g.,
count_sup2

1). For example, this will happen if there is a cycle in the up relation reachable
from a. Analogous situations occur with most applications of counting. As a result, the
counting technique can only be used where the underlying data set is known to satisfy
certain restrictions.
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This preceding example is a simple application of the general technique of counting.
A more general version of counting uses three kinds of indexes. The first, illustrated in the
example, records information about levels of proof trees. The second is used to record
information about what rule is being expanded, and the third is used to record which
atom of the rule body is being considered (see Exercise 13.23). A description of the kinds
of programs for which the counting technique can be used is beyond the scope of this
book. Although limited in applicability, the counting technique has been shown to yield
significant savings in some contexts.
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[GdM86] develop iterative algebraic programs for linear datalog programs. [GS87] extends
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in [CT87, Tan88].
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ized supplementary magic sets for datalog. This was generalized to logic programming in
[Sek89]. Magic set rewriting has also been applied to optimize SQL queries [MFPR90].
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Supplementary magic is incorporated in [BR91]. Analytic comparisons of magic and
counting for selected programs are presented in [MSPS87].
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forms a graph corresponding to the flow of tuples through a bottom-up evaluation and then
modifies the graph in a manner that captures information passing resulting from constants
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Several of the investigations just mentioned, including [BR87a, KL86a, KL86b, Ull85,
Vie86], emphasize the idea that sideways information passing and control are largely
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general form of sideways information passing, which passes bounding inequalities between
subgoals, is studied in [APP+86]. A formal framework for studying the success of pushing
selections into datalog programs is developed in [BKBR87].

Several papers have studied the connection between top-down and bottom-up evalua-
tion techniques. One body of the research in this direction focuses on the sets of facts gener-
ated by the top-down and bottom-up techniques. One of the first results relating top-down
and bottom-up is from [BR87a, BR91], where it is shown that if a top-down technique
and the generalized supplementary magic set technique use a given family of sideways
information passing techniques, then the sets of intermediate facts produced by both tech-
niques correspond. That research is conducted in the context of general logic programs that
are range restricted. These results are generalized to possibly non-range-restricted logic
programs in the independent research [Ram91] and [Sek89]. In that research, bottom-up
evaluations may use terms and tuples that include variables, and bottom-up evaluation of
rewritten programs uses unification rather than simple relational join. A close correspon-
dence between top-down and bottom-up evaluation for datalog was established in [Ull89a],
where subgoal rectification is used. The treatment of Program Pr and Theorem 13.4.1 are
inspired by that development. This close correspondence is extended to arbitrary logic
programs in [Ull89b]. Using a more detailed cost model, [SR93] shows that bottom-up
evaluation asymptotically dominates top-down evaluation for logic programs, even if they
produce nonground terms in their output.

A second direction of research on the connection between top-down and bottom-up
approaches provides an elegant unifying framework [Bry89]. Recall in the discussion of
Theorem 13.2.2 that the answer to a query can be obtained by performing the steps of
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the QSQ until a fixpoint is reached. Note that the fixpoint operator used in this chapter is
different from the conventional bottom-up application of TP used by the naive algorithm for
datalog evaluation. The framework presented in [Bry89] is based on meta-interpreters (i.e.,
interpreters that operate on datalog rules in addition to data); these can be used to specify
QSQ and related algorithms as bottom-up, fixpoint evaluations. (Such meta-programming
is common in functional and logic programming but yields novel results in the context of
datalog.) Reference [Bry89] goes on to describe several top-down and bottom-up datalog
evaluation techniques within the framework, proving their correctness and providing a
basis for comparison.

A recent investigation [NRSU89] improves the performance of the magic sets in some
cases. If the program and query satisfy certain conditions, then a technique called factoring
can be used to replace some predicates by new predicates of lower arity. Other improve-
ments are considered in [Sag90], where it is shown in particular that the advantage of one
method over another may depend on the actual data, therefore stressing the need for tech-
niques to estimate the size of idb’s (e.g., [LN90]).

Extensions of the datalog evaluation techniques to stratified datalog¬ programs (see
Chapter 15) include [BPR87, Ros91, SI88, KT88].

Another important direction of research has been the parallel evaluation of datalog
programs. Heuristics are described in [CW89b, GST90, Hul89, SL91, WS88, WO90].

A novel approach to answering datalog queries efficiently is developed in [DT92,
DS93]. The focus is on cases in which the same query is asked repeatedly as the under-
lying edb is changing. The answer of the query (and additional scratch paper relations)
is materialized against a given edb state, and first-order queries are used incrementally to
maintain the materialized data as the underlying edb state is changed.

A number of prototype systems based on variants of datalog have been developed,
incorporating some of the techniques mentioned in this chapter. They include DedGin
[Vie87b, LV89], NAIL! [Ull85, MUV86, MNS+87], LDL [NT89], ALGRES [CRG+88],
NU-Prolog [RSB+87], GLUE-NAIL [DMP93], and CORAL [RSS92, RSSS93]. Descrip-
tions of projects in this area can also be found in [Zan87], [RU94].

Exercises

Exercise 13.1 Recall the program RSG′ from Section 13.1. Exhibit an instance I such that on
this input, δirsg �= ∅ for each i > 0.

Exercise 13.2 Recall the informal discussion of the two seminaive “versions” of the nonlinear
ancestor program discussed in Section 13.1. Let P1 denote the first of these, and P2 the second.
Show the following.

(a) For some input, P2 can produce the same tuple more than once at some level beyond
the first level.

(b) If P2 produces the same tuple more than once, then each occurrence corresponds to
a distinct proof tree (see Section 12.5) from the program and the input.

(c) P1 can produce a given tuple twice, where the proof trees corresponding to the two
occurrences are identical.

Exercise 13.3 Consider the basic seminaive algorithm (13.1.1).
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(a) Verify that this algorithm terminates on all inputs.

(b) Show that for each i ≥ 0 and each idb predicate S, after the ith execution of the
loop the value of variable Si is equal to T iP (I)(S) and the value of .i+1

S is equal
to T i+1

P (I)(S)− T iP (I)(S).

(c) Verify that this algorithm produces correct output on all inputs.

(d) Give an example input for which the same tuple is generated during different loops
of the algorithm.

Exercise 13.4 Consider the improved seminaive algorithm (13.1.2).

(a) Verify that this algorithm terminates and produces correct output on all inputs.

(b) Give an example of a program P for which the improved seminaive algorithm pro-
duces fewer redundant tuples than the basic seminaive algorithm.

Exercise 13.5 Let P be a linear datalog program, and let P ′ be the set of rules associated with
P by the improved seminaive algorithm. Suppose that the naive algorithm is performed using P ′
on some input I. Does this yield P(I)? Why or why not? What if the basic seminaive algorithm
is used?

Exercise 13.6 A set X of relevant facts for datalog query (P, q) and input I is minimal if (1)
for each answer β of q there is a proof tree for β constructed from facts in X, and (2) X is
minimal having this property. Informally describe an algorithm that produces a minimal set of
relevant facts for a query (P, q) and input I and is polynomial time in the size of I.

Exercise 13.7 [BR91] Suppose that program P includes the rule

ρ : S(x, y)← S1(x, z), S2(z, y), S3(u, v), S4(v,w),

where S3, S4 are edb relations. Observe that the atoms S3(u, v) and S4(v,w) are not connected
to the other atoms of the rule body or to the rule head. Furthermore, in an evaluation of P on
input I, this rule may contribute some tuple to S only if there is an assignment α for u, v,w such
that {S3(u, v), S4(v,w)}[α] ⊆ I. Explain why it is typically more efficient to replace ρ with

ρ ′ : S(x, y)← S1(x, z), S2(z, y)

if there is such an assignment and to delete ρ from P otherwise. Extend this to the case when
S3, S4 are idb relations. State a general version of this heuristic improvement.

Exercise 13.8 Consider the adorned rule

Rbf (x,w)← S
bf

1 (x, y), S
bf

2 (y, z), T
ff

1 (u, v), T
bf

2 (v,w).

Explain why it makes sense to view the second occurrence of v as bound.

Exercise 13.9 Consider the rule

R(x, y, y)← S(y, z), T (z, x).

(a) Construct adorned versions of this rule for Rff b and Rfbb.
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(b) Suppose that in the QSQ algorithm a tuple 〈b, c〉 is placed into input_Rfbb. Explain
why this tuple should not be placed into the 0th supplementary relation for the second
adorned rule constructed in part (a).

(c) Exhibit an example analogous to part (b) based on the presence of a constant in the
head of a rule rather than on repeated variables.

Exercise 13.10

(a) Complete the evaluation in Example 13.2.1.

(b) Use Algorithm 13.2.3 (QSQR) to evaluate that example.

�Exercise 13.11 In the QSQR algorithm, the procedure for processing subqueries of the form
(Rγ , S) is called until no global variable is changed. Exhibit an example datalog query and input
where the second cycle of calls to the subqueries (Rγ , S) generates new answer tuples.

♠Exercise 13.12 (a) Prove Theorem 13.2.2. (b) Prove that the QSQR algorithm is correct.

�Exercise 13.13 The Iterative QSQ (QSQI) algorithm uses the QSQ framework, but without
recursion. Instead in each iteration it processes each rule body from left to right, using the values
currently in the relations ans_Rγ when computing values for the supplementary relations.
As with QSQR, the variables input_Rγ and ans_Rγ are global, and the variables for the
supplementary relations are local. Iteration continues until there is no change to the global
variables.

(a) Specify the QSQI algorithm more completely.

(b) Give an example where QSQI performs redundant work that QSQR does not.

Exercise 13.14 [BR91] Consider the following query based on a nonlinear variant of the
same-generation program, called here the SGV query:

(a) sgv(x, y)← flat(x, y)

(b) sgv(x, y)← up(x, z1), sgv(z1, z2), flat(z2, z3), sgv(z3, z4), down(z4, y)
query(y)← sgv(a, y)

Give the magic set transformation of this program and query.

Exercise 13.15 Give examples of how a query (Pm, qm) resulting from magic set rewriting
can produce nonrelevant and redundant facts.

♠Exercise 13.16

(a) Give the general definition of the magic set rewriting technique.

(b) Prove Theorem 13.3.1.

Exercise 13.17 Compare the difficulties, in practical terms, of using the QSQ and magic set
frameworks for evaluating datalog queries.

�Exercise 13.18 Let (P, q) denote the SGV query of Exercise 13.14. Let (Pm, qm) denote the
result of rewriting this program, using the (generalized supplementary) magic set transformation
presented in this chapter. Under an earlier version, called here “original” magic, the rewritten
form of (P, q) is (P om, qom):



340 Evaluation of Datalog

sgvbf (x, y) ← input_sgvbf (x), flat(x, y)(o-m1)

sgvbf (x, y) ← input_sgvbf (x), up(x, z1), sgvbf (z1, z2),(o-m2)

flat(z2, z3), sgvbf (z3, z4), down(z4, y)

input_sgvbf (z1)← input_sgvbf (x), up(x, z1)(o-i2.2)

input_sgvbf (z3)← input_sgvbf (x), up(x, z1), sgvbf (z1, z2),(o-i2.4)

flat(z2, z3)

input_sgv(a) ←(o-seed)

query(y) ← sgvbf (a, y)(o-query)

Intuitively, the original magic set transformation uses the relations input_Rγ , but not supple-
mentary relations.

(a) Verify that (P om, qom) is equivalent to (P, q).

(b) Compare the family of facts computed during the executions of (Pm, qm) and
(P om, qom).

(c) Give a specification for the original magic set transformation, applicable to any
datalog query.

�Exercise 13.19 Consider the adorned rule

Rbbf (x, y, z)← T
bf

1 (x, s), T
bf

2 (s, t), T
bf

3 (y, u), T
bf

4 (u, v), T
bbf

5 (t, v, z).

A sip graph for this rule has as nodes all atoms of the rule and a special node exit, and
edges (R, T1), (T1, T2), (R, T3), (T3, T4), (T2, T5), (T4, T5), (T5, exit). Describe a family of
supplementary relations, based on this sip graph, that can be used in conjunction with the QSQ
and magic set approaches. [Use one supplementary relation for each edge (corresponding to
the output of the tail of the edge) and one supplementary relation for each node except for R
(corresponding to the input to this node—in general, this will equal the join of the relations for
the edges entering the node).] Explain how this may increase efficiency over the left-to-right
approach used in this chapter. Generalize the construction. (The notion of sip graph and its use
is a variation of [BR91].)

♠Exercise 13.20 [Ull89a] Specify an algorithm that replaces a program and query by an equiv-
alent one, all of whose idb subgoals are rectified. What is the complexity of this algorithm?

♠Exercise 13.21

(a) Provide a more detailed specification of the QSQ framework with annotations, and
prove its correctness.

(b) [Ull89b, Ull89a] State formally the definitions needed for Theorem 13.4.1, and prove
it.

Exercise 13.22 Write a program using counting that can be used to answer the RSG query
presented at the beginning of Section 13.2.
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count_sgvbf (I,K,L, y) ← count_input_sgvbf (I,K,L, x), flat(x, y)(c-s1.1)

count_sup2
1(I,K,L, z1) ← count_input_sgvbf (I,K,L, x), up(x, z1)(c-s2.1)

count_sup2
2(I,K,L, z2) ← count_sup2

1(I,K,L, z1),(c-s2.2)

count_sgvbf (I + 1, 2K + 2, 5L+ 2, z2)

count_sup2
3(I,K,L, z3) ← count_sup2

2(I,K,L, z2), flat(z2, z3)(c-s2.3)

count_sup2
4(I,K,L, z4) ← count_sup2

3(I,K,L, z3),(c-s2.4)

count_sgvbf (I + 1, 2K + 2, 5L+ 4, z4),

count_sgvbf (I,K,L, y) ← count_sup2
4(I,K,L, z4), down(z4, y)(c-s2.5)

count_input_sgvbf (I + 1, 2K + 2, 5L+ 2, z1)(c-i2.2)

← count_sup2
1(I,K,L, z1)

count_input_sgvbf (I + 1, 2K + 2, 5L+ 4, z3)(c-i2.4)

← count_sup2
3(I,K,L, z3)

count_input_sgvbf (1, 0, 0, a)←(c-seed)

query(y) ← count_sgvbf (1, 0, 0, y)(c-query)

Figure 13.9: Generalized counting transformation on SGV query

�Exercise 13.23 [BR91] This exercise illustrates a version of counting that is more general
than that of Exercise 13.22. Indexed versions of predicates shall have three index coordinates
(occurring leftmost) that hold:

(i) The level in the proof tree of the subgoal that a given rule is expanding.

(ii) An encoding of the rules used along the path from the root of the proof tree to the
current subgoal. Suppose that there are k rules, numbered (1), . . . , (k). The index
for the root node is 0 and, given index K , if rule number i is used next, then the next
index is given by kK + i.

(iii) An encoding of the atom occurrence positions along the path from root to the current
node. Assuming that l is the maximum number of idb atoms in any rule body, this
index is encoded in a manner similar to item (ii).

A counting version of the SGV query of Exercise 13.14 is shown in Fig. 13.9. Verify that this is
equivalent to the SGV query in the case where there are no cycles in up or down.



14 Recursion and Negation

Vittorio: Let’s combine recursion and negation.
Riccardo: That sounds hard to me.

Sergio: It’s no problem, just add fixpoint to the calculus, or while to the algebra.
Riccardo: That sounds hard to me.

Vittorio: OK—how about datalog with negation?
Riccardo: That sounds hard to me.

Alice: Riccardo, you are recursively negative.

The query languages considered so far were obtained by augmenting the conjunctive
queries successively with disjunction, negation, and recursion. In this chapter, we

consider languages that provide both negation and recursion. They allow us to ask queries
such as, “Which are the pairs of metro stops which are not connected?”. This query is not
expressible in relational calculus and algebra or in datalog.

The integration of recursion and negation is natural and yields highly expressive lan-
guages. We will see how it can be achieved in the three paradigms considered so far: al-
gebraic, logic, and deductive. The algebraic language is an extension of the algebra with
a looping construct and an assignment, in the style of traditional imperative programming
languages. The logic language is an extension of the calculus in which recursion is provided
by a fixpoint operator. The deductive language extends datalog with negation.

In this chapter, the semantics of datalog with negation is defined from a purely compu-
tational perspective that is in the spirit of the algebraic approach. More natural and widely
accepted model-theoretic semantics, such as stratified and well-founded semantics, are pre-
sented in Chapter 15.

As we consider increasingly powerful languages, the complexity of query evaluation
becomes a greater concern. We consider two flavors of the languages in each paradigm:
the inflationary one, which guarantees termination in time polynomial in the size of the
database; and the noninflationary one, which only guarantees that a polynomial amount
of space is used.1 In the last section of this chapter, we show that the polynomial-time-
bounded languages defined in the different paradigms are equivalent. The set of queries
they define is called the fixpoint queries. The polynomial-space-bounded languages are also
equivalent, and the corresponding set of queries is called the while queries. In Chapter 17,
we examine in more detail the expressiveness and complexity of the fixpoint and while
queries. Note that, in particular, the polynomial time and space bounds on the complexity

1 For comparison, it is shown in Chapter 17 that CALC requires only logarithmic space.

342
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of such queries imply that there are queries that are not fixpoint or while queries. More
powerful languages are considered in Chapter 18.

Before describing specific languages, we present an example that illustrates the prin-
ciples underlying the two flavors of the languages.

Example The following is based on a version of the well-known “game of life,” which
is used to model biological evolution. The game starts with a set of cells, some of which
are alive and some dead; the alive ones are colored in blue or red. (One cell may have two
colors.) Each cell has other cells as neighbors. Suppose that a binary relation Neighbor
holds the neighbor relation (considered as a symmetric relation) and that the information
about living cells and their color is held in a binary relation Alive (see Fig. 14.1). Suppose
first that a cell can change status from dead to alive following this rule:

A dead cell becomes alive if it has at least two neighbors that are alive(α)

and have the same color. It then takes the color of the “parents.”

The evolution of a particular population for the Neighbor graph of Fig. 14.1(a) is given in
Fig. 14.1(b). Observe that the sets of tuples keep increasing and that we reach a stable state.
This is an example of inflationary iteration.

Now suppose that the evolution also obeys the second rule:

(β) A live cell dies if it has more than three live neighbors.

The evolution of the population with the two rules is given in Fig. 14.1(c). Observe that
the number of tuples sometimes decreases and that the computation diverges. This is an
example of noninflationary iteration.

All languages that we consider use a fixed set of relation schemas throughout the com-
putation. At any point in the computation, intermediate results contain only constants from
the input database or that are specified in the query. Suppose the relations used in the
computation have arities r1, . . . , rk, the input database contains n constants, and the query
refers to c constants. Then the number of tuples in any intermediate result is bounded by∑k

i=1(n + c)ri , which is a polynomial in n. Thus such queries can be evaluated in poly-
nomial space. As will be seen when the formal definitions are in place, this implies that
each noninflationary iteration, and hence each noninflationary query, can be evaluated in
polynomial space, whether or not it terminates. In contrast, the inflationary semantics en-
sures termination by requiring that a tuple can never be deleted once it has been inserted.
Because there are only polynomially many tuples, each such program terminates in poly-
nomial time.

To summarize, the inflationary languages use iteration based on an “inflation of tu-
ples.” In all three paradigms, inflationary queries can be evaluated in polynomial time, and
the same expressive power is obtained. The noninflationary languages use noninflation-
ary or destructive assignment inside of iterations. In all three paradigms, noninflationary
queries can be evaluated in polynomial space, and again the same expressive power is
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Neighbor

a e

b e

c e

d e

(a) Neighbor

Alive Alive Alive

a blue a blue a blue

b red b red b red

c blue c blue c blue . . .

d red d red d red

e blue e blue

e red e red

(b) Inflationary evolution

Alive Alive Alive Alive Alive

a blue a blue a blue a blue a blue

b red b red b red b red b red . . .

c blue c blue c blue c blue c blue

d red d red d red d red d red

e blue e blue

e red e red

(c) Noninflationary evolution

Figure 14.1: Game of life

obtained. (We note, however, that it remains open whether the inflationary and the non-
inflationary languages have equivalent expressive power; we discuss this issue later.)

14.1 Algebra + While

Relational algebra is essentially a procedural language. Of the query languages, it is the
closest to traditional imperative programming languages. Chapters 4 and 5 described how it
can be extended syntactically using assignment (:=) and composition (;) without increasing
its expressive power. The extensions of the algebra with recursion are also consistent with
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the imperative paradigm and incorporate a while construct, which calls for the iteration
of a program segment. The resulting language comes in two flavors: inflationary and
noninflationary. The two versions of the language differ in the semantics of the assignment
statement. The noninflationary version was the one first defined historically, and we discuss
it next. The resulting language is called the while language.

Noninflationary Semantics

Recall from Chapter 4 that assignment statements can be incorporated into the algebra
using expressions of the form R := E, where E is an algebra expression and R a relational
variable of the same sort as the result of E. (The difference from Chapter 4 is that it is no
longer required that each successive assignment statement use a distinct, previously unused
variable.) In the while language, the semantics of an assignment statement is as follows:
The value of R becomes the result of evaluating the algebra expression E on the current
state of the database. This is the usual destructive assignment in imperative programming
languages, where the old value of a variable is overwritten.

While statements have the form

while change do
begin
〈loop body〉
end

There is no explicit termination condition. Instead a loop runs as long as the execution
of the body causes some change to some relation (i.e., until a stable state is reached). At
the end of this section, we consider the introduction of explicit terminating conditions and
see that this does not affect the language in an essential manner.

Nesting of loops is permitted. A while program is a finite sequence of assignment or
while statements. The program uses a finite set of relational variables of specified sorts,
including the names of relations in the input database. Relational variables that are not in
the input database are initialized to the empty relation. A designated relational variable
holds the output to the program at the end of the computation. The image (or value) of
program P on I, denoted P(I), is the value finally assigned to the designated variable if P
terminates on I; otherwise P(I) is undefined.

Example 14.1.1 (Transitive Closure) Consider a binary relation G[AB], specifying
the edges of a graph. The following while program computes in T [AB] the transitive
closure of G.

T :=G;
while change do

begin
T := T ∪ πAB(δB→C(T ) �� δA→C(G));
end

A computation ends when T becomes stable, which means that no new edges were
added in the current iteration, so T now holds the transitive closure of G.



346 Recursion and Negation

Example 14.1.2 (Add-Remove) Consider again a binary relation G specifying the
edges of a graph. Each loop of the following program

• removes from G all edges 〈a, b〉 if there is a path of length 2 from a to b, and

• inserts an edge 〈a, b〉 if there is a vertex not directly connected to a and b.

This is iterated while some change occurs. The result is placed into the binary relation T .
In addition, the binary relation variables ToAdd and ToRemove are used as “scratch paper.”
For the sake of readability, we use the calculus with active domain semantics whenever this
is easier to understand than the corresponding algebra expression.

T :=G;
while change do

begin
ToRemove := {〈x, y〉 | ∃z(T (x, z) ∧ T (z, y))};
ToAdd := {〈x, y〉 | ∃z(¬T (x, z) ∧ ¬T (z, x) ∧ ¬T (y, z) ∧ ¬T (z, y))};
T := (T ∪ ToAdd)− ToRemove;
end

In the Transitive Closure example, the transitive closure query always terminates. This
is not the case for the Add-Remove query. (Try the graph {〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉}.) The
halting problem for while programs is undecidable (i.e., there is no algorithm that, given
a while program P , decides whether P halts on each input; see Exercise 14.2). Observe,
however, that for a pair (P, I), one can decide whether P halts on input I because, as argued
earlier, while computations are in pspace.

Inflationary Semantics

We define next an inflationary version of the while language, denoted by while+. The
while+ language differs with while in the semantics of the assignment statement. In particu-
lar, in while+, assignment is cumulative rather than destructive: Execution of the statement
assigning E to R results in adding the result of E to the old value of R. Thus no tuple is
removed from any relation throughout the execution of the program. To distinguish the cu-
mulative semantics from the destructive one, we use the notation P += e for the cumulative
semantics.

Example 14.1.3 (Transitive Closure Revisited) Following is a while+ program that
computes the transitive closure of a graph represented by a binary relation G[AB]. The
result is obtained in the variable T [AB].

T +=G;
while change do

begin
T += πAB(δB→C(T ) �� δA→C(G));
end
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This is almost exactly the same program as in the while language. The only difference is
that because assignment is cumulative, it is not necessary to add the content of T to the
result of the projection.

To conclude this section, we consider alternatives for the control condition of loops.
Until now, we based termination on reaching a stable state. It is also common to use explicit
terminating conditions, such as tests for emptiness of the form E = ∅, E �= ∅, or E �= E′,
where E,E′ are relational algebra expressions. The body of the loop is executed as long as
the condition is satisfied. The following example shows how transitive closure is computed
using explicit looping conditions.

Example 14.1.4 We use another relation schema oldT also of sort AB.

T +=G;
while (T − oldT ) �= ∅ do

begin
oldT += T ;
T += πAB(δB→C(T ) �� δA→C(G));
end

In the program, oldT keeps track of the value of T resulting from the previous iteration
of the loop. The computation ends when oldT and T coincide, which means that no new
edges were added in the current iteration, so T now holds the transitive closure of G.

It is easily shown that the use of such termination conditions does not modify the
expressive power of while, and the use of conditions such as E �= E′ does not modify the
expressive power of while+ (see Exercise 14.5).

In Section 14.4 we shall see that nesting of loops in while queries does not increase
expressive power.

14.2 Calculus + Fixpoint

Just as in the case of the algebra, we provide inflationary and noninflationary extensions of
the calculus with recursion. This could be done using assignment statements and while
loops, as for the algebra. Indeed, we used calculus notation in Example 14.1.2 (Add-
Remove). Instead we use an equivalent but more logic-oriented construct to augment the
calculus. The construct, called a fixpoint operator, allows the iteration of calculus formulas
up to a fixpoint. In effect, this allows defining relations inductively using calculus formulas.
As with while, the fixpoint operator comes in a noninflationary and an inflationary flavor.

For the remainder of this chapter, as a notational convenience, we use active domain
semantics for calculus queries. In addition, we often use a formula ϕ(x1, . . . , xn) as an
abbreviation for the query {x1, . . . , xn | ϕ(x1, . . . , xn)}. These two simplifications do not
affect the results developed.
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Partial Fixpoints

The noninflationary version of the fixpoint operator is considered first. It is illustrated in
the following example.

Example 14.2.1 (Transitive Closure Revisited) Consider again the transitive closure
of a graph G. The relations Jn holding pairs of nodes at distance at most n can be defined
inductively using the single formula

ϕ(T )=G(x, y) ∨ T (x, y) ∨ ∃ z(T (x, z) ∧G(z, y))

as follows:

J0 = ∅;
Jn = ϕ(Jn−1), n > 0.

Here ϕ(Jn−1) denotes the result of evaluating ϕ(T ) when the value of T is Jn−1. Note
that, for each input G, the sequence {Jn}n≥0 converges. That is, there exists some k for
which Jk = Jj for every j > k (indeed, k is the diameter of the graph). Clearly, Jk holds
the transitive closure of the graph. Thus the transitive closure of G can be defined as the
limit of the foregoing sequence. Note that Jk = ϕ(Jk), so Jk is also a fixpoint of ϕ(T ). The
relation Jk thereby obtained is denoted by µT (ϕ(T )). Then the transitive closure of G is
defined by

µT (G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧G(z, y))).

By definition, µT is an operator that produces a new relation (the fixpoint Jk) when applied
to ϕ(T ). Note that, although T is used in ϕ(T ), T is not a database relation but rather a
relation used to define inductively µT (ϕ(T )) from the database, starting with T = ∅. T is
said to be bound to µT . Indeed, µT is somewhat similar to a quantifier over relations. Note
that the scope of the free variables of ϕ(T ) is restricted to ϕ(T ) by the operator µT .

In the preceding example, the limit of the sequence {Jn}n≥0 happens to exist and is in
fact the least fixpoint of ϕ. This is not always the case; the possibility of nontermination
is illustrated next (and Exercise 14.4 considers cases in which a nonminimal fixpoint is
reached).

Example 14.2.2 Consider

ϕ(T )= (x = 0 ∧ ¬T (0) ∧ ¬T (1)) ∨ (x = 0 ∧ T (1)) ∨ (x = 1 ∧ T (0)).

In this case the sequence {Jn}n≥0 is ∅, {〈0〉}, {〈1〉}, {〈0〉}, . . . (i.e., T flip-flops between zero
and one). Thus the sequence does not converge, and µT (ϕ(T )) is not defined. Situations
in which µ is undefined correspond to nonterminating computations in the while language.
The following nonterminating while program corresponds to µT (ϕ(T )).
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T := {〈0〉};
while change do

begin
T := {〈0〉, 〈1〉} − T ;
end

Because µ is only partially defined, it is called the partial fixpoint operator. We now
define its syntax and semantics in more detail.

Partial Fixpoint Operator Let R be a database schema, and let T [m] be a relation
schema not in R. Let S denote the schema R ∪ {T }. Let ϕ(T ) be a formula using T and
relations in R, with m free variables. Given an instance I over R, µT (ϕ(T )) denotes the
relation that is the limit, if it exists, of the sequence {Jn}n≥0 defined by

J0 = ∅;
Jn = ϕ(Jn−1), n > 0,

where ϕ(Jn−1) denotes the result of evaluating ϕ on the instance Jn−1 over S whose
restriction to R is I and Jn−1(T )= Jn−1.

The expression µT (ϕ(T )) denotes a new relation (if it is defined). In turn, it can be
used in more complex formulas like any other relation. For example, µT (ϕ(T ))(y, z) states
that 〈y, z〉 is in µT (ϕ(T )). If µT (ϕ(T )) defines the transitive closure ofG, the complement
of the transitive closure is defined by

{〈x, y〉 | ¬ µT (ϕ(T ))(x, y)}.

The extension of the calculus with µ is called partial fixpoint logic, denoted CALC+µ.

Partial Fixpoint Logic CALC+µ formulas are obtained by repeated applications of
CALC operators (∃,∀,∨,∧,¬) and the partial fixpoint operator, starting from atoms. In
particular, µT (ϕ(T ))(e1, . . . , en), where T has arity n, ϕ(T ) has n free variables, and the
ei are variables or constants, is a formula. Its free variables are the variables in the set
{e1, . . . , en} [thus the scope of variables occurring inside ϕ(T ) consists of the subformula
to which µT is applied]. Partial fixpoint operators can be nested. CALC+µ queries over a
database schema R are expressions of the form

{〈e1, . . . , en〉 | ξ},

where ξ is a CALC+µ formula whose free variables are those occurring in e1, . . . , en. The
formula ξ may use relation names in addition to those in R; however, each occurrence P
of such relation name must be bound to some partial fixpoint operator µP . The semantics
of CALC+µ queries is defined as follows. First note that, given an instance I over R and a
sentence σ in CALC+µ, there are three possibilities: σ is undefined on I; σ is defined on I
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and is true; and σ is defined on I and is false. In particular, given an instance I over R, the
answer to the query

q = {〈e1, . . . , en〉 | ξ}

is undefined if the application of some µ in a subformula is undefined. Otherwise the
answer to q is the n-ary relation consisting of all valuations ν of e1, . . . , en for which
ξ(ν(e1), . . . , ν(en)) is defined and true. The queries expressible in partial fixpoint logic
are called the partial fixpoint queries.

Example 14.2.3 (Add-Remove Revisited) Consider again the query in Example
14.1.2. To express the query in CALC+µ, a difficulty arises: The while program initializes
T to G before the while loop, whereas CALC+µ lacks the capability to do this directly.
To distinguish the initialization step from the subsequent ones, we use a ternary relation Q
and two distinct constants: 0 and 1. To indicate that the first step has been performed, we
insert in Q the tuple 〈1, 1, 1〉. The presence of 〈1, 1, 1〉 in Q inhibits the repetition of the
first step. Subsequently, an edge 〈x, y〉 is encoded in Q as 〈x, y, 0〉. The while program in
Example 14.1.2 is equivalent to the CALC+µ query

{〈x, y〉 | µQ(ϕ(Q))(x, y, 0)}

where

ϕ(Q)=
[¬Q(1, 1, 1) ∧ [(G(x, y) ∧ z= 0) ∨ (x = 1 ∧ y = 1 ∧ z= 1)]]
∨
[Q(1, 1, 1) ∧ [(x = 1 ∧ y = 1 ∧ z= 1) ∨

((z= ((z= 0) ∧Q(x, y, 0) ∧ ¬∃w(Q(x,w, 0) ∧Q(w, y, 0))) ∨
((z= ((z= 0) ∧ ∃w(¬Q(x,w, 0) ∧ ¬Q(w, x, 0) ∧

¬Q(y,w, 0) ∧ ¬Q(w, y, 0)))]].

Clearly, this query is more awkward than its counterpart in while. The simulation highlights
some peculiarities of computing with CALC+µ.

In Section 14.4 it is shown that the family of partial fixpoint queries is equivalent to
the while queries. In the preceding definition of µT (ϕ(T )), the scope of all free variables
in ϕ is defined by µT . For example, if T is binary in the following

∃y(P (y) ∧ µT (ϕ(T , x, y))(z, w)),

then ϕ(T , x, y) has free variables x, y. According to the definition, y is not free in
µT (ϕ(T , x, y))(z, w) (the free variables are z,w). Hence the quantifier ∃y applies to the
y in P(y) alone and has no relation to the y in µT (ϕ(T , x, y))(z, w). To avoid confusion,
it is preferable to use distinct variable names in such cases. For instance, the preceding
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sentence can be rewritten as

∃y(P (y) ∧ µT (ϕ(T , x′, y′))(z, w)).

A variant of the fixpoint operator can be developed that permits free variables under the
fixpoint operator, but this does not increase the expressive power (see Exercise 14.11).

Simultaneous Induction

Consider the following use of nested partial fixpoint operators, where G,P , and Q are
binary:

µP(G(x, y) ∧ µQ(ϕ(P,Q))(x, y)).

Here ϕ(P,Q) involves both P and Q. This corresponds to a nested iteration. In each
iteration i in the computation of {Jn}n≥0 over P , the fixpoint µQ(ϕ(P,Q)) is recomputed
for the successive values Ji of P .

In contrast, we now consider a generalization of the partial fixpoint that permits simul-
taneous iteration over two or more relations. For example, let R be a database schema and
ϕ(P,Q) and ψ(P,Q) be calculus formulas using P and Q not in R, such that the arity
of P (respectively Q) is the number of free variables in ϕ (ψ). On input I over R, one can
define inductively the sequence {Jn}n≥0 of relations over {P,Q} as follows:

J0(P )= ∅
J0(Q)= ∅
Jn(P )= ϕ(Jn−1(P ), Jn−1(Q))

Jn(Q)= ψ(Jn−1(P ), Jn−1(Q)).

Such a mutually recursive definition of Jn(P ) and Jn(Q) is referred to as simultaneous
induction. If the sequence {Jn(P ), Jn(Q)}n≥0 converges, the limit is a fixpoint of the map-
ping on pairs of relations defined by ϕ(P,Q) and ψ(P,Q). This pair of values for P and
Q is denoted by µP,Q(ϕ(P,Q),ψ(P,Q)), and µP,Q is a simultaneous induction partial
fixpoint operator. The value for P in µP,Q is denoted by µP,Q(ϕ(P,Q),ψ(P,Q))(P )
and the value for Q by µP,Q(ϕ(P,Q),ψ(P,Q))(Q). Clearly, simultaneous induction
definitions like the foregoing can be extended for any number of relations. Simultaneous
induction can simplify certain queries, as shown next.

Example 14.2.4 (Add-Remove by Simultaneous Induction) Consider again the
query Add-Remove in Example 14.2.3. One can simplify the query by introducing an
auxiliary unary relation Off , which inhibits the transfer of G into T after the first step
in a direct fashion. T and Off are defined in a mutually recursive fashion by ϕOff and ϕT ,
respectively:
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ϕOff (x)= x = 1

ϕT (x, y)= [¬Off (1) ∧G(x, y)]
∨ [Off (1) ∧ ¬∃z(T (x, z) ∧ T (z, y)) ∧
(T (x, y) ∨ ∃z(¬T (x, z) ∧ ¬T (z, x) ∧ ¬T (y, z) ∧ ¬T (z, y))].

The Add-Remove query can now be written as

{〈x, y〉 | µOff ,T (ϕOff (Off , T ), ϕT (Off , T ))(T )(x, y)}.

It turns out that using simultaneous induction instead of regular fixpoint operators
does not provide additional power. For example, a CALC+µ formula equivalent to the
query in Example 14.2.4 is the one shown in Example 14.2.3. More generally, we have
the following:

Lemma 14.2.5 For some n, let ϕi(R1, . . . , Rn) be CALC formulas, i in [1..n], such
that µR1,...,Rn(ϕ1(R1, . . . , Rn), . . . , ϕn(R1, . . . , Rn)) is a correct formula. Then for each
i ∈ [1, n] there exist CALC formulas ϕ′i(Q) and tuples !ei of variables or constants such
that for each i,

µR1,...,Rn(ϕ1(R1, . . . , Rn), . . . , ϕn(R1, . . . , Rn))(Ri)≡ µQ(ϕ
′
i(Q))( !ei).

Crux We illustrate the construction with reference to the query of Example 14.2.4. In-
stead of using two relations Off and T , we use a ternary relation Q that encodes both Off
and T . The extra coordinate is used to distinguish between tuples in T and tuples in Off .
A tuple 〈x〉 in Off is encoded as a tuple 〈x, 1, 1〉 in Q. A tuple 〈x, y〉 in T is encoded as a
tuple 〈x, y, 0〉 in Q. The final result is obtained by selecting from Q the tuples where the
third coordinate is 0 and projecting the result on the first two coordinates.

Note that the use of the tuples !ei allows one to perform appropriate selections and
projections on µQ(ϕ′i(Q)) necessary for decoding. These selections and projections are
essential and cannot be avoided (see Exercise 14.17c).

Inflationary Fixpoint

The nonconvergence in some cases of the sequence {Jn}n≥0 in the semantics of the par-
tial fixpoint operator is similar to nonterminating computations in the while language with
noninflationary semantics. The semantics of the partial fixpoint operator µ is essentially
noninflationary because in the inductive definition of Jn, each step is a destructive assign-
ment. As with while, we can make the semantics inflationary by having the assignment at
each step of the induction be cumulative. This yields an inflationary version of µ, denoted
by µ+ and called the inflationary fixpoint operator, which is defined for all formulas and
databases to which it is applied.
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Inflationary Fixpoint Operators and Logic The definition of µ+
T (ϕ(T )) is identical to

that of the partial fixpoint operator except that the sequence {Jn}n≥0 is defined as follows:

J0 = ∅;
Jn = Jn−1 ∪ ϕ(Jn−1), n > 0.

This definition ensures that the sequence {Jn}n≥0 is increasing: Ji−1 ⊆ Ji for each i > 0.
Because for each instance there are finitely many tuples that can be added, the sequence
converges in all cases.

Adding µ+ instead of µ to CALC yields inflationary fixpoint logic, denoted by
CALC+µ+. Note that inflationary fixpoint queries are always defined.

The set of queries expressible by inflationary fixpoint logic is called the fixpoint
queries. The fixpoint queries were historically defined first among the inflationary lan-
guages in the algebraic, logic, and deductive paradigms. Therefore the class of queries
expressible in inflationary languages in the three paradigms has come to be referred to as
the fixpoint queries.

As a simple example, the transitive closure of a graph G is defined by the following
CALC+µ+ query:

{〈x, y〉 | µ+
T (G(x, y) ∨ ∃z(T (x, z) ∧G(z, y))(x, y)}.

Recall that datalog as presented in Chapter 12 uses an inflationary operator and yields
the minimal fixpoint of a set of rules. One may also be tempted to assume that an inflation-
ary simultaneous induction of the form µ+

P,Q(ϕ(P,Q),ψ(P,Q)) is equivalent to a system
of equational definitions of the form

P = ϕ(P,Q)

Q= ψ(P,Q)

and that it computes the unique minimal fixpoint for P and Q. However, one should
be careful because the result of the inflationary fixpoint computation is only one of the
possible fixpoints. As illustrated in the following example, this may not be minimal or
the “naturally” expected fixpoint. (There may not exist a unique minimal fixpoint; see
Exercise 14.4.)

Example 14.2.6 Consider the equation

T (x, y) =G(x, y) ∨ T (x, y) ∨ ∃z(T (x, z) ∧G(z, y))
CT (x, y)=¬T (x, y).

One is tempted to believe that the fixpoint of these two equations yields the complement of
transitive closure. However, with the inflationary semantics
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J0(T ) = ∅
J0(CT )= ∅
Jn(T ) = Jn−1(T ) ∪ {〈x, y〉 |G(x, y) ∨ Jn−1(T )(x, y)

∨ ∃z(Jn−1(T )(x, z) ∧G(z, y))}
Jn(CT )= Jn−1(CT ) ∪ {〈x, y〉 | ¬Jn−1(T )(x, y)}

leads to saturating CT at the first iteration.

Positive and Monotone Formulas

Making the fixpoint operator inflationary by definition is not the only way to guarantee
polynomial-time termination of the fixpoint iteration. An alternative approach is to restrict
the formulas ϕ(T ) so that convergence of the sequence {Jn}n≥0 associated with µT (ϕ(T ))
is guaranteed. One such restriction is monotonicity. Recall that a query q is monotone if
for each I, J, I ⊆ J then q(I)⊆ q(J). One can again show that for such formulas, a least
fixpoint always exists and that it is obtained after a finite (but unbounded) number of stages
of inductive applications of the formula.

Unfortunately, monotonicity is an undecidable property for CALC. One can also re-
strict the application of fixpoint to positive formulas. This was historically the first track
that was followed and presents the advantage that positiveness is a decidable (syntactic)
property. It is done by requiring that T occur only positively in ϕ(T ) (i.e., under an even
number of negations in the syntax tree of the formula). All formulas thereby obtained are
monotone, and so µT (ϕ(T )) is always defined (see Exercise 14.10).

It can be shown that the approach of inflationary fixpoint and the two approaches
based on fixpoint of positive or monotone formulas are equivalent (i.e., the sets of queries
expressed are identical; see Exercise 14.10).

Fixpoint Operators and Circumscription

In some sense, the fixpoint operators act as quantifiers on relational variables. This is some-
what similar to the well-known technique of circumscription studied in artificial intelli-
gence. Suppose ψ(T ) is a calculus sentence (i.e., no free variables) that uses T in addition
to relations from a database schema R. The circumscription of ψ(T ) with respect to T ,
denoted here by circT (ψ(T )), can be thought of as an operator defining a new relation,
starting from the database. More precisely, let I be an instance over R. Then circT (ψ(T ))
denotes the relation containing all tuples belonging to every relation T such that (1) ψ(T )
holds for I, and (2) T is minimal under set inclusion2 with this property. Consider now a
fixpoint query. As stated earlier, fixpoint queries can be expressed using just fixpoint op-
erators µT applied to formulas positive in T (i.e., T always appears in ϕ under an even
number of negations). We claim that µT (ϕ(T ))= circT (ϕ′(T )), where ϕ′(T ) is a sentence

2 Other kinds of minimality have also been considered.
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obtained from ϕ(T ) as follows:

ϕ′(T )= ∀x1, . . .∀xn(ϕ(T , x1, . . . , xn)→ T (x1, . . . , xn)),

where the arity of T is n. To see this, it is sufficient to note that µT (ϕ(T )) is the unique
minimal T satisfying ϕ′(T ). This uses the monotonicity of ϕ(T ) with respect to T , which
follows from the fact that ϕ(T ) is positive in T (see Exercise 14.10). Although computing
with circumscription is generally intractable, the fixpoint operator on positive formulas
can always be evaluated in polynomial time. Thus the fixpoint operator can be viewed as a
tractable restriction of circumscription.

14.3 Datalog with Negation

Datalog provides recursion but no negation. It defines only monotonic queries. Viewed
from the standpoint of the deductive paradigm, datalog provides a form of monotonic
reasoning. Adding negation to datalog rules permits the specification of nonmonotonic
queries and hence of nonmonotonic reasoning.

Adding negation to datalog rules requires defining semantics for negative facts. This
can be done in many ways. The different definitions depend to some extent on whether da-
talog is viewed in the deductive framework or simply as a specification formalism like any
other query language. In this chapter, we examine the latter point of view. Then datalog
with negation can essentially be viewed as a subset of the while or fixpoint queries and
can be treated similarly. This is not necessarily appropriate in the deductive framework.
For instance, the basic assumptions in the reasoning process may require that once a fact is
assumed false at some point in the inferencing process, it should not be proven true at a later
point. This idea lies at the core of stratified and well-founded semantics, two of the most
widely accepted in the deductive framework. The deductive point of view is considered in
depth in Chapter 15.

The semantics given here for datalog with negation follows the semantics given in
Chapter 12 for datalog, but does not correspond directly to the semantics for nonrecursive
datalog¬ given in Chapter 5. The semantics in Chapter 5 is inspired by the stratified
semantics but can be simulated by (either of) the semantics presented in this chapter.

As in the previous section, we consider both inflationary and noninflationary versions
of datalog with negation.

Inflationary Semantics

The inflationary language allows negations in bodies of rules and is denoted by datalog¬.
Like datalog, its rules are used to infer a set of facts. Once a fact is inferred, it is never
removed from the set of true facts. This yields the inflationary character of the language.

Example 14.3.1 We present a datalog¬ program with input a graph in binary re-
lation G. The program computes the relation closer(x, y, x′, y′) defined as follows:
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closer(x, y, x′, y′) means that the distance d(x, y) from x to y in G is smaller than the
distance d(x′, y′) from x′ to y′ [d(x, y) is infinite if there is no path from x to y].

T (x, y) ←G(x, y)

T (x, y) ← T (x, z),G(z, y)

closer(x, y, x′, y′)← T (x, y),¬T (x′, y′)
The program is evaluated as follows. The rules are fired simultaneously with all applicable
valuations. At each such firing, some facts are inferred. This is repeated until no new facts
can be inferred. A negative fact such as ¬T (x′, y′) is true if T (x′, y′) has not been inferred
so far. This does not preclude T (x′, y′) from being inferred at a later firing of the rules.
One firing of the rules is called a stage in the evaluation of the program. In the preceding
program, the transitive closure of G is computed in T . Consider the consecutive stages
in the evaluation of the program. Note that if the fact T (x, y) is inferred at stage n, then
d(x, y)= n. So if T (x′, y′) has not been inferred yet, this means that the distance between
x and y is less than that between x′ and y′. Thus if T (x, y) and ¬T (x′, y′) hold at some
stage n, then d(x, y)≤ n and d(x′, y′) > n and closer(x, y, x′, y′) is inferred.

The formal syntax and semantics of datalog¬ are straightforward extensions of those
for datalog. A datalog¬ rule is an expression of the form

A← L1, . . . , Ln,

where A is an atom and each Li is either an atom Bi (in which case it is called positive) or
a negated atom ¬Bi (in which case it is called negative). (In this chapter we use an active
domain semantics for evaluating datalog¬ and so do not require that the rules be range
restricted; see Exercise 14.13.)

A datalog¬ program is a nonempty finite set of datalog¬ rules. As for datalog pro-
grams, sch(P ) denotes the database schema consisting of all relations involved in the pro-
gram P ; the relations occurring in heads of rules are the idb relations of P , and the others
are the edb relations of P .

The semantics of datalog¬ that we present in this chapter is an extension of the fixpoint
semantics of datalog. Let K be an instance over sch(P ). Recall that an (active domain)
instantiation of a rule A← L1, . . . , Ln is a rule ν(A)← ν(L1), . . . , ν(Ln), where ν is a
valuation that maps each variable into adom(P,K). A factA′ is an immediate consequence
for K and P if A′ ∈ K(R) for some edb relation R, or A′ ← L′

1, . . . , L
′
n is an instantiation

of a rule in P and each positive L′
i is a fact in K, and for each negative L′

i = ¬A′
i, A

′
i �∈

K. The immediate consequence operator of P , denoted  P , is now defined as follows. For
each K over sch(P ),

 P(K)= K ∪ {A | A is an immediate consequence for K and P }.

Given an instance I over edb(P ), one can compute  P(I),  2
P (I),  

3
P (I), etc. As suggested

in Example 14.3.1, each application of  P is called a stage in the evaluation. From the
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definition of  P , it follows that

 P(I)⊆  2
P (I)⊆  3

P (I)⊆ . . . .

As for datalog, the sequence reaches a fixpoint, denoted  ∞
P (I), after a finite number of

steps. The restriction of this to the idb relations (or some subset thereof) is called the image
(or answer) of P on I.

An important difference with datalog is that  ∞
P (I) is no longer guaranteed to be a

minimal model of P containing I, as illustrated next.

Example 14.3.2 Let P be the program

R(0)←Q(0),¬R(1)
R(1)←Q(0),¬R(0).

Let I = {Q(0)}. Then P(I)= {Q(0), R(0), R(1)}. Although P(I) is a model of P , it is not
minimal. The minimal models containing I are {Q(0), R(0)} and {Q(0), R(1)}.

As discussed in Chapter 12, the operational semantics of datalog based on the im-
mediate consequence operator is equivalent to the natural semantics based on minimal
models. As shown in the preceding example, there may not be a unique minimal model for
a datalog¬ program, and the semantics given for datalog¬ may not yield any of the minimal
models. The development of a natural model-theoretic semantics for datalog¬ thus calls for
selecting a natural model from among several possible candidates. Inevitably, such choices
are open to debate; Chapter 15 presents several alternatives.

Noninflationary Semantics

The language datalog¬ has inflationary semantics because the set of facts inferred through
the consecutive firings of the rules is increasing. To obtain a noninflationary variant, there
are several possibilities. One could keep the syntax of datalog¬ but make the seman-
tics noninflationary by retaining, at each stage, only the newly inferred facts (see Exer-
cise 14.16). Another possibility is to allow explicit retraction of a previously inferred fact.
Syntactically, this can be done using negations in heads of rules, interpreted as deletions
of facts. We adopt this solution here, in part because it brings our language closer to some
practical languages that use so-called (production) rules in the sense of expert and active
database systems. The resulting language is denoted by datalog¬¬, to indicate that nega-
tions are allowed in both heads and bodies of rules.

Example 14.3.3 (Add-Remove Visited Again) The following datalog¬¬ program
computes in T the Add-Remove query of Example 14.1.2, given as input a graph G.
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T (x, y) ←G(x, y),¬off (1)

off (1) ←
¬T (x, y)← T (x, z), T (z, y), off (1)

T (x, y) ←¬T (x, z),¬T (z, x),¬T (y, z),¬T (z, y), off (1)

Relation off is used to inhibit the first rule (initializing T to G) after the first step.

The immediate consequence operator  P and semantics of a datalog¬¬ program are
analogous to those for datalog¬, with the following important proviso. If a negative literal
¬A is inferred, the fact A is removed, unless A is also inferred in the same firing of
the rules. This gives priority to inference of positive over negative facts and is somewhat
arbitrary. Other possibilities are as follows: (1) Give priority to negative facts; (2) interpret
the simultaneous inference of A and ¬A as a “no-op” (i.e., including A in the new instance
only if it is there in the old one); and (3) interpret the simultaneous inference of A and
¬A as a contradiction that makes the result undefined. The chosen semantics has the
advantage over possibility (3) that the semantics is always defined. In any case, the choice
of semantics is not crucial: They yield equivalent languages (see Exercise 14.15).

With the semantics chosen previously, termination is no longer guaranteed. For in-
stance, the program

T (0) ← T (1)

¬T (1)← T (1)

T (1) ← T (0)

¬T (0)← T (0)

never terminates on input T (0). The value of T flip-flops between {〈0〉} and {〈1〉}, so no
fixpoint is reached.

Datalog¬¬ and Datalog¬ as Fragments of CALC+µ and CALC+µ+

Consider datalog¬¬. It can be viewed as a subset of CALC+µ in the following manner.
Suppose thatP is a datalog¬¬ program. The idb relations defined by rules can alternately be
defined by simultaneous induction using formulas that correspond to the rules. Each firing
of the rules corresponds to one step in the simultaneous inductive definition. For instance,
the simultaneous induction definition corresponding to the program in Example 14.3.3 is
the one in Example 14.2.4. Because simultaneous induction can be simulated in CALC+µ
(see Lemma 14.2.5), datalog¬¬ can be simulated in CALC+µ. Moreover, notice that only a
single application of the fixpoint operator is used in the simulation. Similar remarks apply
to datalog¬ and CALC+µ+. Furthermore, in the inflationary case it is easy to see that the
formula can be chosen to be existential (i.e., its prenex normal form3 uses only existential

3 A CALC formula in prenex normal form is a formula Q1x1 . . .Qkxkϕ where Qi, 1 ≤ i ≤ k are
quantifiers and ϕ is quantifier free.
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quantifiers). The same can be shown in the noninflationary case, although the proof is more
subtle. In summary (see Exercise 14.18), the following applies:

Lemma 14.3.4 Each datalog¬¬ (datalog¬) query is equivalent to a CALC+µ (CALC+µ+)
query of the form

{ !x | µ(+)T (ϕ(T ))(!t)},

where

(a) ϕ is an existential CALC formula, and

(b) !t is a tuple of variables or constants of appropriate arity and !x is the tuple of
distinct free variables in !t .

The Rule Algebra

The examples of datalog¬ programs shown in this chapter make it clear that the semantics
of such programs is not always easy to understand. There is a simple mechanism that
facilitates the specification by the user of various customized semantics. This is done by
means of the rule algebra, which allows specification of an order of firing of the rules
as well as firing up to a fixpoint in an inflationary or noninflationary manner. For the
inflationary version RA+ of the rule algebra, the base expressions are individual datalog¬
rules; the semantics associated with a rule is to apply its immediate consequence operator
once in a cumulative fashion. Union (∪) can be used to specify simultaneous application of
a pair of rules or more complex programs. The expression P ;Q specifies the composition
of P and Q; its semantics is to execute P once and then Q once. Inflationary iteration of
program P is called for by (P )+. The noninflationary version of the rule algebra, denoted
RA, starts with datalog¬ rules, but now with a noninflationary, destructive semantics, as
defined in Exercise 14.16. Union and composition are generalized in the natural fashion,
and the noninflationary iterator, denoted ∗, is used.

Example 14.3.5 Let P be the set of rules

T (x, y)←G(x, y)

T (x, y)← T (x, z),G(z, y)

and let Q consist of the rule

CT (x, y)←¬T (x, y).

TheRA+ program (P )+;Q computes inCT the complement of the transitive closure ofG.

It follows easily from the results of Section 14.4 that RA+ is equivalent to datalog¬,
and RA is equivalent to noninflationary datalog¬ and hence to datalog¬¬ (Exercise 14.23).
Thus an RA+ program can be compiled into a (possibly much more complicated) datalog¬
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program. For instance, the RA+ program in Example 14.3.5 is equivalent to the datalog¬
program in Example 14.4.2. The advantage of the rule algebra is the ease of expressing
various semantics. In particular, RA+ can be used easily to specify the stratified and well-
founded semantics for datalog¬ introduced in Chapter 15.

14.4 Equivalence

The previous sections introduced inflationary and noninflationary recursive languages with
negation in the algebraic, logic, and deductive paradigms. This section shows that the infla-
tionary languages in the three paradigms, while+, CALC+µ+, and datalog¬, are equivalent
and that the same holds for the noninflationary languages while, CALC+µ, and datalog¬¬.
This yields two classes of queries that are central in the theory of query languages: the fix-
point queries (expressed by the inflationary languages) and the while queries (expressed by
the noninflationary languages). This is summarized in Fig. 14.2, at the end of the chapter.

We begin with the equivalence of the inflationary languages because it is the more
difficult to show. The equivalence of CALC+µ+ and while+ is easy because the languages
have similar capabilities: Program composition in while+ corresponds closely to formula
composition in CALC+µ+, and the while change loop of while+ is close to the inflationary
fixpoint operator of CALC+µ+. More difficult and surprising is the equivalence of these
languages with datalog¬, because this much simpler language has no explicit constructs
for program composition or nested recursion.

Lemma 14.4.1 CALC+µ+ and while+ are equivalent.

Proof We consider first the simulation of CALC+µ+ queries by while+. Let {〈x1,. . . ,xm〉 |
ξ(x1,. . . ,xm)} be a CALC+µ+ query over an input database with schema R. It suffices to
show that there exists a while+ program Pξ that defines the same result as ξ(x1, . . . , xm) in
some m-ary relation Rξ . The proof is by induction on the depth of nesting of the fixpoint
operator in ξ , denoted d(ξ). If d(ξ)= 0 (i.e., ξ does not contain a fixpoint operator), then
ξ is in CALC and Pξ is

Rξ += Eξ,

where Eξ is the relational algebra expression corresponding to ξ . Now suppose the state-
ment is true for formulas with depth of nesting of the fixpoint operator less than d(d > 0).
Let ξ be a formula with d(ξ)= d .

If ξ = µQ(ϕ(Q))(f1, . . . , fk), then Pξ is

Q += ∅;
while change do

begin
Eϕ;
Q += Rϕ
end;
Rξ += π(σ(Q)),
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where π(σ(Q)) denotes the selection and projection corresponding to f1, . . . , fk.
Suppose now that ξ is obtained by first-order operations from k formulas ξ1, . . . , ξk,

each having µ+ as root. Let Eξ(Rξ1, . . . , Rξk) be the relational algebra expression corre-
sponding to ξ , where each subformula ξi = µQ(ϕ(Q))(e

i
1, . . . , e

i
ni
) is replaced by Rξi . For

each i, let Pξi be a program that produces the value of µQ(ϕ(Q))(ei1, . . . , e
i
ni
) and places

it into Rξi . Then Pξ is

Pξ1; . . . ; Pξk;
Rξ += Eξ(Rξ1, . . . , Rξk).

This completes the induction and the proof that CALC+µ+ can be simulated by while+.
The converse simulation is similar (Exercise 14.20).

We now turn to the equivalence of CALC+µ+ and datalog¬. Lemma 14.3.4 yields the
subsumption of datalog¬ by CALC+µ+. For the other direction, we simulate CALC+µ+
queries using datalog¬. This simulation presents two main difficulties.

The first involves delaying the firing of a rule until after the completion of a fixpoint
by another set of rules. Intuitively, this is hard because checking that the fixpoint has been
reached involves checking the nonexistence rather than the existence of some valuation,
and datalog¬ is more naturally geared toward checking the existence of valuations. The
solution to this difficulty is illustrated in the following example.

Example 14.4.2 The following datalog¬ program computes the complement of the tran-
sitive closure of a graph G. The example illustrates the technique used to delay the firing
of a rule (computing the complement) until the fixpoint of a set of rules (computing the
transitive closure) has been reached (i.e., until the application of the transitivity rule yields
no new tuples). To monitor this, the relations old-T , old-T -except-final are used. old-T
follows the computation of T but is one step behind it. The relation old-T -except-final
is identical to old-T but the rule defining it includes a clause that prevents it from firing
when T has reached its last iteration. Thus old-T and old-T -except-final differ only in the
iteration after the transitive closure T reaches its final value. In the subsequent iteration,
the program recognizes that the fixpoint has been reached and fires the rule computing the
complement in relation CT . The program is

T (x, y) ←G(x, y)

T (x, y) ←G(x, z), T (z, y)

old-T (x, y) ← T (x, y)

old-T -except-final(x, y)← T (x, y), T (x′, z′), T (z′, y′),¬T (x′, y′)
CT (x, y) ←¬T (x, y), old-T (x′, y′),

¬old-T -except-final(x′, y′)

(It is assumed that G is not empty; see Exercise 14.3.)
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The second difficulty concerns keeping track of iterations in the computation of a
fixpoint. Given a formula µ+

T (ϕ(T )), the simulation of ϕ itself may involve numerous re-
lations other than T , whose behavior may be “sabotaged” by an overly zealous application
of iteration of the immediate consequence operator. To overcome this, we separate the in-
ternal computation of ϕ from the external iteration over T , as illustrated in the following
example.

Example 14.4.3 Let G be a binary relation schema. Consider the CALC+µ+ query
µ+

good(φ(good))(x), where

φ = ∀y (G(y, x)→ good(y)).

Note that the query computes the set of nodes in G that are not reachable from a cycle
(in other words, the nodes such that the length of paths leading to them is bounded). One
application of ϕ(good) is achieved by the datalog¬ program P :

bad(x) ←G(y, x),¬good(y)

delay ←
good(x)← delay,¬bad(x)

Simply iterating P does not yield the desired result. Intuitively, the relations delay and bad,
which are used as “scratch paper” in the computation of a single iteration of µ+, cannot be
reinitialized and so cannot be reused to perform the computation of subsequent iterations.

To surmount this problem, we essentially create a version of P for each iteration of
ϕ(good). The versions are distinguished by using “timestamps.” The nodes themselves
serve as timestamps. The timestamps marking iteration i are the values newly introduced
in relation good at iteration i − 1. Relations delay and delay-stamped are used to delay
the derivation of new tuples in good until bad and bad-stamped (respectively) have been
computed in the current iteration. The process continues until no new values are introduced
in an iteration. The full program is the union of the three rules given earlier, which perform
the first iteration, and the following rules, which perform the iteration with timestamp t :

bad-stamped(x, t)←G(y, x),¬good(y), good(t)

delay-stamped(t) ← good(t)

good(x) ← delay-stamped(t),¬bad-stamped(x, t).

We now embark on the formal demonstration that datalog¬ can simulate CALC+µ+.
We first introduce some notation relating to the timestamping of a program in the sim-
ulation. Let m ≥ 1. For each relation schema Q, let Q be a new relational schema with
arity(Q)= arity(Q)+m. If (¬)Q(e1, . . . , en) is a literal and !z an m-tuple of distinct vari-
ables, then (¬)Q(e1, . . . , en)[!z] denotes the literal (¬)Q(e1, . . . , en, z1, . . . , zm). For each
program P and tuple !z, P [!z] denotes the program obtained from P by replacing each literal
A by A[!z]. Let P be a program and B1, . . . , Bq a list of literals. Then P // B1, . . . , Bq is
the program obtained by appending B1, . . . , Bq to the bodies of all rules in P .
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To illustrate the previous notation, consider the program P consisting of the following
two rules:

S(x, y)← R(x, y)

S(x, y)← R(x, z), S(z, y).

Then P [z] // ¬T (x,w, y) is

S(x, y, z)← R(x, y, z),¬T (x,w, y)
S(x, y, z)← R(x, z, z), S(z, y, z),¬T (x,w, y).

Lemma 14.4.4 CALC+µ+ and datalog¬ are equivalent.

Proof As seen in Lemma 14.3.4, datalog¬ is essentially a fragment of CALC+µ+, so
we just need to show the simulation of CALC+µ+ by datalog¬. The proof is by structural
induction on the CALC+µ+ formula. The core of the proof involves a control mechanism
that delays firing certain rules until other rules have been evaluated. Therefore the induction
hypothesis involves the capability to simulate the CALC+µ+ formula using a datalog¬
program as well as to produce concomitantly a predicate that only becomes true when the
simulation has been completed. More precisely, we will prove by induction the following:
For each CALC+µ+ formula ϕ over a database schema R, there exists a datalog¬ program
prog(ϕ) whose edb relations are the relations in R, whose idb relations include resultϕ
with arity equal to the number of free variables in ϕ and a 0-ary relation doneϕ such that
for every instance I over R,

(i) [prog(ϕ)(I)](resultϕ)= ϕ(I), and

(ii) the 0-ary predicate doneϕ becomes true at the last stage in the evaluation of
prog(ϕ) on I.

We will assume, without loss of generality, that no variable of ϕ occurs free and bound,
or bound to more than one quantifier, that ϕ contains no ∀ or ∨, and that the initial query
has the form {x1, . . . , xn | ξ}, where x1, . . . , xn are distinct variables. Note that the last
assumption implies that (i) establishes the desired result.

Suppose now that ϕ is an atom R(!e). Let !x be the tuple of distinct variables occurring
in !e. Then prog(ϕ) consists of the rules

doneϕ ←
resultϕ(!x)← R(!e).

There are four cases to consider for the induction step.

1. ϕ = α ∧ β. Without loss of generality, we assume that the idb relations of
prog(α) and prog(β) are disjoint. Thus there is no interference between prog(α)
and prog(β). Let !x and !y be the tuples of distinct free variables of α and β, re-
spectively, and let !z be the tuple of distinct free variables occurring in !x or !y.
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Then prog(ϕ) consists of the following rules:

prog(α)

prog(β)

resultϕ(!z)← doneα, doneβ, resultα(!x), resultβ(!y)
doneϕ ← doneα, doneβ.

2. ϕ = ∃ x(ψ). Let !y be the tuple of distinct free variables of ψ , and let !z be the tuple
obtained from !y by removing the variable x. Then prog(ϕ) consists of the rules

prog(ψ)

resultϕ(!z)← doneψ, resultψ(!y)
doneϕ ← doneψ.

3. ϕ = ¬(ψ). Let !x be the tuple of distinct free variables occurring in ψ . Then
prog(ϕ) consists of

prog(ψ)

resultϕ(!x)← doneψ,¬resultψ(!x)
doneϕ ← doneψ.

4. ϕ = µS(ψ(S))(!e). This case is the most involved, because it requires keeping
track of the iterations in the computation of the fixpoint as well as bookkeeping
to control the value of the special predicate doneϕ. Intuitively, each iteration
is marked by timestamps. The current timestamps consist of the tuples newly
inserted in the previous iteration. The program prog(ϕ) uses the following new
auxiliary relations:

Relation fixpointϕ contains µS(ψ(S)) at the end of the computation, and
resultϕ contains µS(ψ(S))(!e).
Relation runϕ contains the timestamps.
Relation usedϕ contains the timestamps introduced in the previous stages
of the iteration. The active timestamps are in runϕ − usedϕ.
Relation not-finalϕ is used to detect the final iteration (i.e., the iteration that
adds no new tuples to fixpointϕ). The presence of a timestamp in usedϕ −
not-finalϕ indicates that the final iteration has been completed.
Relations delayϕ and not-emptyϕ are used for timing and to detect an empty
result.

In the following, !y and !t are tuples of distinct variables with the same arity as S. We
first have particular rules to perform the first iteration and to handle the special case of an
empty result:
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prog(ψ)

fixpointϕ(!y)← resultψ(!y), doneψ

delayϕ ← doneψ

not-emptyϕ ← resultψ(!y)
doneϕ ← delayϕ,¬not-emptyϕ.

The remainder of the program contains the following rules:

• Stamping of the database and starting an iteration: For each R in ψ different from S

and a tuple !x of distinct variables with same arity as R,

R(!x,!t)← R(!x), fixpointϕ(!t)
runϕ(!t)← fixpointϕ(!t)
S(!y,!t)← fixpointϕ(!y), fixpointϕ(!t).

• Timestamped iteration:

prog(ψ)[!t]//runϕ(!t),¬usedϕ(!t)

• Maintain fixpointϕ, not-lastϕ, and usedϕ:

fixpointϕ(!y) ← doneψ(!t), resultψ(!y,!t),¬usedϕ(!t)
not-finalϕ(!t)← doneψ(!t), resultψ(!y,!t),¬fixpointϕ(!y)
usedϕ(!t) ← doneψ(!t)

• Produce the result and detect termination:

resultϕ(!z)← fixpointϕ(!e)

where !z is the tuple of distinct variables in !e,

doneϕ ← usedϕ(!t),¬not-finalϕ(!t).

It is easily verified by inspection that prog(ϕ) satisfies (i) and (ii) under the induction
hypothesis for cases (1) through (3). To see that (i) and (ii) hold in case (4), we carefully
consider the stages in the evaluation of progϕ. Let I be an instance over the relations
in ψ other than S; let J0 = ∅ be over S; and let Ji = Ji−1 ∪ ψ(Ji−1) for each i > 0.
Then µS(ψ(S))(I)= Jn for some n such that Jn = Jn−1. The program progϕ simulates the
consecutive iterations of this process. The first iteration is simulated using progψ directly,
whereas the subsequent iterations are simulated by progψ timestamped with the tuples
added at the previous iteration. (We omit consideration of the case in which the fixpoint
is ∅; this is taken care of by the rules involving delayϕ and not-emptyϕ.)
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We focus on the stages in the evaluation of progϕ corresponding to the end of the
simulation of each iteration of ψ . The stage in which the simulation of the first iteration
is completed immediately follows the stage in which doneψ becomes true. The subsequent
iterations are completed immediately following the stages in which

∃!t(doneψ(!t) ∧ ¬usedϕ(!t))

becomes true. Thus let k1 be the stage in which doneψ becomes true, and let ki (2 < i ≤ n)
be the successive stages in which

∃!t(doneψ(!t) ∧ ¬usedϕ(!t))

is true. First note that

• at stage k1

{!y | resultψ(!y)} = ψ(J0);

• at stage k1 + 1

fixpointϕ = J1.

For i > 1 it can be shown by induction on i that

• at stage ki (i ≤ n)

{ !t | doneψ(!t) ∧ ¬usedϕ(!t)} = ψ(Ji−2)− Ji−2 = Ji−1 − Ji−2

{ !y | doneψ(!t) ∧ resultψ(!y,!t) ∧ ¬usedϕ(!t)} = ψ(Ji−1);
{ !t | doneψ(!t) ∧ resultψ(!y,!t) ∧ ¬fixpointϕ(!y)} = ψ(Ji−1)− Ji−1 = Ji − Ji−1;

• at stage ki + 1 (i < n)

fixpointϕ = Ji−1 ∪ ψ(Ji−1)= Ji,

usedϕ = not-lastϕ = doneψ = Ji−1;

• at stage ki + 2 (i < n)

{ !t | runϕ(!t) ∧ ¬usedϕ(!t)} = Ji − Ji−1,

{ !x | R(!x,!t) ∧ runϕ(!t) ∧ ¬usedϕ(!t)} = I(R),

{ !x | S(!x,!t) ∧ runϕ(!t) ∧ ¬usedϕ(!t)} = Ji.

Finally, at stage kn + 1

usedϕ = Jn−1,



14.4 Equivalence 367

not-lastϕ = Jn−2,

fixpointϕ = Jn = µS(ψ(S))(I),

and at stage kn + 2

resultϕ = µS(ψ(S))(!z)(I),
doneϕ = true.

Thus (i) and (ii) hold for progϕ in case (4), which concludes the induction.

Lemmas 14.4.1 and 14.4.4 now yield the following:

Theorem 14.4.5 while+, CALC+µ+, and datalog¬ are equivalent.

The set of queries expressible in while+, CALC+µ+, and datalog¬ is called the fixpoint
queries. An analogous equivalence result can be proven for the noninflationary languages
while, CALC+µ, and datalog¬¬. The proof of the equivalence of CALC+µ and datalog¬¬
is easier than in the inflationary case because the ability to perform deletions in datalog¬¬
facilitates the task of simulating explicit control (see Exercise 14.21). Thus we can prove
the following:

Theorem 14.4.6 while, CALC+µ, and datalog¬¬ are equivalent.

The set of queries expressible in while, CALC+µ, and datalog¬¬ is called the while
queries. We will look at the fixpoint queries and the while queries from a complexity
and expressiveness standpoint in Chapter 17. Although the spirit of our discussion in this
chapter suggested that fixpoint and while are distinct classes of queries, this is far from
obvious. In fact, the question remains open: As shown in Chapter 17, fixpoint and while
are equivalent iff ptime = pspace (Theorem 17.4.3).

The equivalences among languages discussed in this chapter are summarized in
Fig. 14.2.

Normal Forms

The two equivalence theorems just presented have interesting consequences for the under-
lying extensions of datalog and logic. First they show that these languages are closed under
composition and complementation. For instance, if two mappings f, g, respectively, from
a schema S to a schema S′ and from S′ to a schema S′′ are expressible in datalog¬(¬),
then f ◦ g and ¬f are also expressible in datalog¬(¬). Analogous results are true for
CALC+µ(+).

A more dramatic consequence concerns the nesting of recursion in the calculus and
algebra. Consider first CALC+µ+. By the equivalence theorems, this is equivalent to
datalog¬, which, in turn (by Lemma 14.3.4), is essentially a fragment of CALC+µ+.
This yields a normal form for CALC+µ+ queries and implies that a single application of
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Languages Class of queries

while+
inflationary CALC +µ+ fixpoint

datalog¬

while
noninflationary CALC +µ while

datalog¬¬

Figure 14.2: Summary of language equivalence results

the inflationary fixpoint operator is all that is needed. Similar remarks apply to CALC+µ
queries. In summary, the following applies:

Theorem 14.4.7 Each CALC+µ(+) query is equivalent to a CALC+µ(+) query of the
form

{ !x | µ(+)T (ϕ(T ))(!t)},

where ϕ is an existential CALC formula.

Analogous normal forms can be shown for while(+) (Exercise 14.22) and for RA(+)
(Exercise 14.24).

14.5 Recursion in Practical Languages

To date, there are numerous prototypes (but no commercial product) that provide query and
update languages with recursion. Many of these languages provide semantics for recursion
in the spirit of the procedural semantics described in this chapter. Prototypes implementing
the deductive paradigm are discussed in Chapter 15.

SQL 2-3 (a norm provided by ISO/ANSII) allows select statements that define a table
used recursively in the from and where clauses. Such recursion is also allowed in Starburst.
The semantics of the recursion is inflationary, although noninflationary semantics can be
achieved using deletion. An extension of SQL 2-3 is ESQL (Extended SQL). To illustrate
the flavor of the syntax (which is typical for this category of languages), the following
is an ESQL program defining a table SPARTS (subparts), the transitive closure of the
table PARTS. This is done using a view creation mechanism.

create view SPARTS as
select *
from PARTS
union
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select P1.PART, P2.COMPONENT
from SPARTS P1, PARTS P2
where P1.COMPONENT = P2.PART ;

This is in the spirit of CALC+µ+. With deletion, one can simulate CALC+µ. The system
Postgres also provides similar iteration up to a fixpoint in its query language POSTQUEL.

A form of recursion closer to while and while+ is provided by SQL embedded in full
programming languages, such as C+SQL, which allows SQL statements coupled with C
programs. The recursion is provided by while loops in the host language.

The recursion provided by datalog¬ and datalog¬¬ is close in spirit to production-rule
systems. Speaking loosely, a production rule has the form

if 〈condition〉 then 〈action〉.
Production rules permit the specification of database updates, whereas deductive rules usu-
ally support only database queries (with some notable exceptions). Note that the deletion in
datalog¬¬ can be viewed as providing an update capability. The production-rule approach
has been studied widely in connection with expert systems in artificial intelligence; OPS5
is a well-known system that uses this approach.

A feature similar to recursive rules is found in the emerging field of active databases.
In active databases, the rule condition is often broken into two pieces; one piece, called the
trigger, is usually closely tied to the database (e.g., based on insertions to or deletions from
relations) and can be implemented deep in the system.

In active database systems, rules are recursively fired when conditions become true in
the database. Speaking in broad terms, the noninflationary languages studied in this chapter
can be viewed as an abstraction of this behavior. For example, the database language RDL1
is close in spirit to the language datalog¬¬. (See also Chapter 22 for a discussion of active
databases.)

The language Graphlog, a visual language for queries on graphs developed at the
University of Toronto, emphasizes queries involving paths and provides recursion specified
using regular expressions that describe the shape of desired paths.
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Exercises

Exercise 14.1 (Game of life) Consider the two rules informally described in Example 14.1.

(a) Express the corresponding queries in datalog¬(¬), while(+), and CALC+µ(+).
(b) Find an input for which a vertex keeps changing color forever under the second rule.

Exercise 14.2 Prove that the termination problem for a while program is undecidable (i.e., that
it is undecidable, given a while query, whether it terminates on all inputs). Hint: Use a reduction
of the containment problem for algebra queries.

Exercise 14.3 Recall the datalog¬¬ program of Example 14.4.2.

(a) After how many stages does the program complete for an input graph of diameter n?

(b) Modify the program so that it also handles the case of empty graphs.

(c) Modify the program so that it terminates in order of log(n) stages for an input graph
of diameter n.

Exercise 14.4 Recall the definition of µT (ϕ(T )).

(a) Exhibit a formula ϕ such that ϕ(T ) has a unique minimal fixpoint on all inputs, and
µT (ϕ(T )) terminates on all inputs but does not evaluate to the minimal fixpoint on
any of them.
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(b) Exhibit a formula ϕ such that µT (ϕ(T )) terminates on all inputs but ϕ does not have
a unique minimal fixpoint on any input.

Exercise 14.5

(a) Give a while program with explicit looping condition for the query in Exam-
ple 14.1.2.

(b) Prove that while(+) with looping conditions of the form E = ∅, E �= ∅, E = E′,
and E �= E′, where E,E′ are algebra expressions, is equivalent to while(+) with the
change conditions.

Exercise 14.6 Consider the problem of finding, given two graphs G,G′ over the same vertex
set, the minimum set X of vertexes satisfying the following conditions: (1) For each vertex v,
if all vertexes v′ such that there is a G-edge from v′ to v are in X, then v is in X; and (2) the
analogue for G′-edges. Exhibit a while program and a fixpoint query that compute this set.

Exercise 14.7 Recall the CALC+µ+ query of Example 14.4.3.

(a) Run the query on the input graph G:
{〈a, b〉, 〈c, b〉, 〈b, d〉, 〈d, e〉, 〈e, f 〉, 〈f, g〉, 〈g, d〉, 〈e, h〉, 〈i, j〉, 〈j, h〉}.

(b) Exhibit a while+ program that computes good.

(c) Write a program in your favorite conventional programming language (e.g., C or
LISP) that computes the good vertexes of a graph G. Compare it with the database
queries developed in this chapter.

(d) Show that a vertex a is good if there is no path from a vertex belonging to a cycle to
a. Using this as a starting point, propose an alternative algorithm for computing the
good vertexes. Is your algorithm expressible in while? In fixpoint?

�Exercise 14.8 Suppose that the input consists of a graph G together with a successor relation
on the vertexes of G [i.e., a binary relation succ such that (1) each element has exactly one
successor, except for one that has none; and (2) each element in the binary relation G occurs in
succ].

(a) Give a fixpoint query that tests whether the input satisfies (1) and (2).

(b) Sketch a while program computing the set of pairs 〈a, b〉 such that the shortest path
from a to b is a prime number.

(c) Do (b) using a while+ query.

Exercise 14.9 (Simultaneous induction) Prove Lemma 14.2.5.

♠Exercise 14.10 (Fixpoint over positive formulas) Let ϕ(T ) be a formula positive in T (i.e.,
each occurrence of T is under an even number of negations in the syntax tree of ϕ). Let R be
the set of relations other than T occurring in ϕ(T ).

(a) Show that ϕ(T ) is monotonic in T . That is, for all instances I and J over R ∪ {T }
such that I(R) = J(R) and I(T ) ⊆ J(T ),

ϕ(I) ⊆ ϕ(J).

(b) Show that µT (ϕ(T )) is defined on every input instance.

(c) [GS86] Show that the family of CALC+µ queries with fixpoints only over positive
formulas is equivalent to the CALC+µ+ queries.
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�Exercise 14.11 Suppose CALC+µ+ is modified so that free variables are allowed under
fixpoint operators. More precisely, let

ϕ(T , x1, . . . , xn, y1, . . . , ym)

be a formula where T has arity n and the xi and yj are free in ϕ. Then

µT,x1,...,xn(ϕ(T , x1, . . . , xn, y1, . . . , ym))(e1, . . . , en)

is a correct formula, whose free variables are the yj and those occurring among the ei. The
fixpoint is defined with respect to a given valuation of the yj . For instance,

∃z∃w(P (z) ∧ µT,x,y(ϕ(T , x, y, z))(u,w))

is a well-formed formula. Give a precise definition of the semantics for queries using this
operator. Show that this extension does not yield increased expressive power over CALC+µ+.
Do the same for CALC+µ.

Exercise 14.12 Let G be a graph. Give a fixpoint query in each of the three paradigms that
computes the pairs of vertexes such that the shortest path between them is of even length.

Exercise 14.13 Let datalog¬(¬)rr denote the family of datalog¬(¬) programs that are range
restricted, in the sense that for each rule r and each variable x occurring in r , x occurs in a
positive literal in the body of r . Prove that datalog¬rr ≡ datalog¬ and datalog¬¬rr ≡ datalog¬¬.

Exercise 14.14 Show that negations in bodies of rules are redundant in datalog¬¬ (i.e., for
each datalog¬¬ program P there exists an equivalent datalog¬¬ program Q that uses no nega-
tions in bodies of rules). Hint: Maintain the complement of each relation R in a new relation
R′, using deletions.

♠Exercise 14.15 Consider the following semantics for negations in heads of datalog¬¬ rules:

(α) the semantics giving priority to positive over negative facts inferred simultaneously
(adopted in this chapter),

(β) the semantics giving priority to negative over positive facts inferred simultaneously,

(γ ) the semantics in which simultaneous inference of A and ¬A leads to a “no-op” (i.e.,
including A in the new instance only if it is there in the old one), and

(δ) the semantics prohibiting the simultaneous inference of a fact and its negation by
making the result undefined in such circumstances.

For a datalog¬¬ program P , let Pξ , denote the program P with semantics ξ ∈ {α, β, γ, δ}.
(a) Give an example of a program P for which Pα, Pβ , Pγ , and Pδ define distinct queries.

(b) Show that it is undecidable, for a given program P , whether Pδ never simultaneously
infers a positive fact and its negation for any input.

(c) Let datalog¬¬ξ denote the family of queries Pξ for ξ ∈ {α, β, γ }. Prove that data-
log¬¬α ≡ datalog¬¬β ≡ datalog¬¬γ .

(d) Give a syntactic condition on datalog¬¬ programs such that under the δ semantics
they never simultaneously infer a positve fact and its negation, and such that the
resulting query language is equivalent to datalog¬¬α .
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Exercise 14.16 (Noninflationary datalog¬) The semantics of datalog¬ can be made noninfla-
tionary by defining the immediate consequence operator to be destructive in the sense that only
the newly inferred facts are kept after each firing of the rules. Show that, with this semantics,
datalog¬ is equivalent to datalog¬¬.

�Exercise 14.17 (Multiple versus single carriers)

(a) Consider a datalog¬ program P producing the answer to a query in an idb relation
S. Prove that there exists a program Q with the same edb relations as P and just one
idb relation T such that, for each edb instance I,

[P(I)](S) = π(σ([Q(I)](T ))),

where σ denotes a selection and π a projection.

(b) Show that the projection π and selection σ in part (a) are indispensable. Hint: Sup-
pose there is a datalog¬ program with a single edb relation computing the comple-
ment of transitive closure of a graph. Reach a contradiction by showing in this case
that connectivity of a graph is expressible in relational calculus. (It is shown in Chap-
ter 17 that connectivity is not expressible in the calculus.)

(c) Show that the projection and selection used in Lemma 14.2.5 are also indispensable.

�Exercise 14.18

(a) Prove Lemma 14.3.4 for the inflationary case.

(b) Prove Lemma 14.3.4 for the noninflationary case. Hint: For datalog¬¬, the straight-
forward simulation yields a formula µT (ϕ(T ))(!x), where ϕ may contain negations
over existential quantifiers to simulate the semantics of deletions in heads of rules
of the datalog¬¬ program. Use instead the noninflationary version of datalog¬ de-
scribed in Exercise 14.16.

Exercise 14.19 Prove that the simulation in Example 14.4.3 works.

Exercise 14.20 Complete the proof of Lemma 14.4.1 (i.e., prove that each while+ program
can be simulated by a CALC+µ+ program).

�Exercise 14.21 Prove the noninflationary analogue of Lemma 14.4.4 (i.e., that datalog¬¬ can
simulate CALC+µ). Hint: Simplify the simulation in Lemma 14.4.4 by taking advantage of the
ability to delete in datalog¬¬. For instance, rules can be inhibited using “switches,” which can
be turned on and off. Furthermore, no timestamping is needed.

Exercise 14.22 Formulate and prove a normal form for while+ and while, analogous to the
normal forms stated for CALC+µ+ and CALC+µ.

Exercise 14.23 Prove that RA+ is equivalent to datalog¬ and RA is equivalent to noninfla-
tionary datalog¬, and hence to datalog¬¬. Hint: Use Theorems 14.4.5 and 14.4.6 and Exer-
cise 14.16.

Exercise 14.24 Let the star height of anRA program be the maximum number of occurrences
of ∗ and + on a path in the syntax tree of the program. Show that each RA program is equivalent
to an RA program of star height one.



15 Negation in Datalog

Alice: I thought we already talked about negation.
Sergio: Yes, but they say you don’t think by fixpoint.

Alice: Humbug, I just got used to it!
Riccardo: So we have to tell you how you really think.

Vittorio: And convince you that our explanation is well founded!

As originally introduced in Chapter 12, datalog is a toy language that expresses many
interesting recursive queries but has serious shortcomings concerning expressive

power. Because it is monotonic, it cannot express simple relational algebra queries such
as the difference of two relations. In the previous chapter, we considered one approach
for adding negation to datalog that led to two procedural languages—namely, inflationary
datalog¬ and datalog¬¬. In this chapter, we take a different point of view inspired by non-
monotonic reasoning that attempts to view the semantics of such programs in terms of a
natural reasoning process.

This chapter begins with illustrations of how the various semantics for datalog do not
naturally extend to datalog¬. Two semantics for datalog¬ are then considered. The first,
called stratified, involves a syntactic restriction on programs but provides a semantics that
is natural and relatively easy to understand. The second, called well founded, requires
no syntactic restriction on programs, but the meaning associated with some programs
is expressed using a 3-valued logic. (In this logic, facts are true, false, or unknown.)
With respect to expressive power, well-founded semantics is equivalent to the fixpoint
queries, whereas the stratified semantics is strictly weaker. A proof-theoretic semantics
for datalog¬, based on negation as failure, is discussed briefly at the end of this chapter.

15.1 The Basic Problem

Suppose that we want to compute the pairs of disconnected nodes in a graph G (i.e., we
are interested in the complement of the transitive closure of a graph whose edges are given
by a binary relation G). We already know how to define the transitive closure of G in a
relation T using the datalog program PTC of Chapter 12:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y).

To define the complement CT of T , we are naturally tempted to use negation as we

374
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did in Chapter 5. Let PTCcomp be the result of adding the following rule to PTC:

CT (x, y)←¬T (x, y).

To simplify the discussion, we generally assume an active domain interpretation of
datalog¬ rules.

In this example, negation appears to be an appealing addition to the datalog syntax.
The language datalog¬ is defined by allowing, in bodies of rules, literals of the form
¬Ri(ui), where Ri is a relation name and ui is a free tuple. In addition, the equality
predicate is allowed, and ¬= (x, y) is denoted by x �= y.

One might hope to extend the model-theoretic, fixpoint, and proof-theoretic semantics
of datalog just as smoothly as the syntax. Unfortunately, things are less straightforward
when negation is present. We illustrate informally the problems that arise if one tries to
extend the least-fixpoint and minimal-model semantics of datalog. We shall discuss the
proof-theoretic aspect later.

Fixpoint Semantics: Problems

Recall that, for a datalog program P , the fixpoint semantics of P on input I is the unique
minimal fixpoint of the immediate consequence operator TP containing I. The immediate
consequence operator can be naturally extended to a datalog¬ program P . For a program
P , TP is defined as follows1: For each K over sch(P ), A is TP (K) if A ∈ K|edb(P ) or
if there exists some instantiation A← A1, . . . , An of a rule in P for which (1) if Ai is a
positive literal, thenAi ∈ K; and (2) ifAi =¬Bi where Bi is a positive literal, then Bi �∈ K.
[Note the difference from the immediate consequence operator  P defined for datalog¬ in
Section 14.3:  P is inflationary by definition, (that is, K ⊆  P(K) for each K over sch(P ),
whereas TP is not.] The following example illustrates several unexpected properties that
TP might have.

Example 15.1.1

(a) TP may not have any fixpoint. For the propositional program P1 = {p←¬p},
TP1 has no fixpoint.

(b) TP may have several minimal fixpoints containing a given input. For example,
the propositional program P2 = {p←¬q, q←¬p} has two minimal fixpoints
(containing the empty instance): {p} and {q}.

(c) Consider the sequence {T iP (∅)}i>0 for a given datalog¬ program P . Recall that
for datalog, the sequence is increasing and converges to the least fixpoint of TP .
In the case of datalog¬ , the situation is more intricate:

1. The sequence does not generally converge, even if TP has a least fix-
point. For example, let P3 = {p←¬r; r ←¬p;p←¬p, r}. Then

1 Given an instance J over a database schema R with S ⊆ R, J|S denotes the restriction of J to S.
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TP3 has a least fixpoint {p} but {T iP3
(∅)}i>0 alternates between ∅ and

{p, r} and so does not converge (Exercise 15.2).
2. Even if {T iP (∅)}i>0 converges, its limit is not necessarily a minimal

fixpoint of TP , even if such fixpoints exist. To see this, let P4 = {p←
p, q ← q, p←¬p, q ←¬p}. Now {T iP4

(∅)}i>0 converges to {p, q}
but the least fixpoint of TP4 equals {p}.

Remark 15.1.2 (Inflationary fixpoint semantics) The program P4 of the preceding ex-
ample contains two rules of a rather strange form: p← p and q← q. In some sense, such
rules may appear meaningless. Indeed, their logical forms [e.g., (p ∨¬p)] are tautologies.
However, rules of the form R(x1, . . . , xn)← R(x1, . . . , xn) have a nontrivial impact on
the immediate consequence operator TP . If such rules are added for each idb relation R,
this results in making TP inflationary [i.e., K ⊆ TP (K) for each K], because each fact
is an immediate consequence of itself. It is worth noting that in this case, {T iP (I)}i>0 al-
ways converges and the semantics given by its limit coincides with the inflationary fixpoint
semantics for datalog¬ programs exhibited in Chapter 14.

To see the difference between the two semantics, consider again program PTCcomp.
The sequence {T iPTCcomp

(I )}i>0 on input I over G converges to the desired answer (the
complement of transitive closure). With the inflationary fixpoint semantics, CT becomes
a complete graph at the first iteration (because T is initially empty) and PTCcomp does not
compute the complement of transitive closure. Nonetheless, it was shown in Chapter 14 that
there is a different (more complicated) datalog¬ program that computes the complement of
transitive closure with the inflationary fixpoint semantics.

Model-Theoretic Semantics: Problems

As with datalog, we can associate with a datalog¬ program P the set �P of CALC
sentences corresponding to the rules of P . Note first that, as with datalog,�P always has at
least one model containing any given input I. B(P, I) is such a model. [Recall that B(P, I),
introduced in Chapter 12, is the instance in which the idb relations contain all tuples with
values in I or P .]

For datalog, the model-theoretic semantics of a program P was given by the unique
minimal model of �P containing the input. Unfortunately, this simple solution no longer
works for datalog¬, because uniqueness of a minimal model containing the input is not
guaranteed. Program P2 in Example 15.1.1(b) provides one example of this: {p} and {q}
are distinct minimal models of P2. As another example, consider the program PTCcomp

and an input I for predicate G. Let J over sch(PTCcomp) be such that J(G)= I , J(T )⊇ I ,
J(T ) is transitively closed, and J(CT )= {〈x, y〉 | x, y occur in I, 〈x, y〉 �∈ J(T )}. Clearly,
there may be more than one such J, but one can verify that each one is a minimal model of
�PTCcomp satisfying J(G)= I .

It is worth noting the connection between TP and models of �P : An instance K over
sch(P ) is a model of �P iff TP (K)⊆ K. In particular, every fixpoint of TP is a model of
�P . The converse is false (Exercise 15.3).

When for a program P , �P has several minimal models, one must specify which
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among them is the model intended to be the solution. To this end, various criteria of
“niceness” of models have been proposed that can distinguish the intended model from
other candidates. We shall discuss several such criteria as we go along. Unfortunately, none
of these criteria suffices to do the job. Moreover, upon reflection it is clear that no criteria
can exist that would always permit identification of a unique intended model among several
minimal models. This is because, as in the case of program P2 of Example 15.1.1(b), the
minimal models can be completely symmetric; in such cases there is no property that would
separate one from the others using just the information in the input or the program.

In summary, the approach we used for datalog, based on equivalent least-fixpoint
or minimum-model semantics, breaks down when negation is present. We shall describe
several solutions to the problem of giving semantics to datalog¬ programs. We begin with
the simplest case and build up from there.

15.2 Stratified Semantics

This section begins with the restricted case in which negation is applied only to edb rela-
tions. The semantics for negation is straightforward in this case. We then turn to stratified
semantics, which extends this simple case in an extremely natural fashion.

Semipositive Datalog¬

We consider now semipositive datalog¬ programs, which only apply negation to edb rela-
tions. For example, the difference of R and R′ can be defined by the one-rule program

Diff (x)← R(x),¬R′(x).

To give semantics to ¬R′(x), we simply use the closed world assumption (see Chapter 2):
¬R′(x) holds iff x is in the active domain and x �∈ R′. Because R′ is an edb relation, its
content is given by the database and the semantics of the program is clear. We elaborate on
this next.

Definition 15.2.1 A datalog¬ program P is semipositive if, whenever a negative literal
¬R′(x) occurs in the body of a rule in P , R′ ∈ edb(P ).

As their name suggests, semipositive programs are almost positive. One could elimi-
nate negation from semipositive programs by adding, for each edb relation R′, a new edb
relation R′ holding the complement of R′ (with respect to the active domain) and replacing
¬R′(x) by R′(x). Thus it is not surprising that semipositive programs behave much like
datalog programs. The next result is shown easily and is left for the reader (Exercise 15.7).

Theorem 15.2.2 Let P be a semipositive datalog¬ program. For every instance I over
edb(P ),

(i) �P has a unique minimal model J satisfying J|edb(P )= I.

(ii) TP has a unique minimal fixpoint J satisfying J|edb(P )= I.
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(iii) The minimum model in (i) and the least fixpoint in (ii) are identical and equal to
the limit of the sequence {T iP (I)}i>0.

Remark 15.2.3 Observe that in the theorem, we use the formulation “minimal model
satisfying J|edb(P ) = I,” whereas in the analogous result for datalog we used “minimal
model containing I.” Both formulations would be equivalent in the datalog setting because
adding tuples to the edb predicates would result in larger models because of monotonicity.
This is not the case here because negation destroys monotonicity.

Given a semipositive datalog¬ program P and an input I, we denote by P semi−pos(I)
the minimum model of �P (or equivalently, the least fixpoint of TP ) whose restriction to
edb(P ) equals I.

An example of a semipositive program that is neither in datalog nor in CALC is given
by

T (x, y)←¬G(x, y)
T (x, y)←¬G(x, z), T (z, y).

This program computes the transitive closure of the complement of G. On the other hand,
the foregoing program for the complement of transitive closure is not a semipositive pro-
gram. However, it can naturally be viewed as the composition of two semipositive pro-
grams: the program computing the transitive closure followed by the program computing
its complement. Stratification, which is studied next, may be viewed as the closure of semi-
positive programs under composition. It will allow us to specify, for instance, the compo-
sition just described, computing the complement of transitive closure.

Syntactic Restriction for Stratification

We now consider a natural extension of semipositive programs. In semipositive programs,
the use of negation is restricted to edb relations. Now suppose that we use some defined
relations, much like views. Once a relation has been defined by some program, other
programs can subsequently treat it as an edb relation and apply negation to it. This simple
idea underlies an important extension to semipositive programs, called stratified programs.

Suppose we have a datalog¬ program P . Each idb relation is defined by one or more
rules of P . If we are able to “read” the program so that, for each idb relation R′, the portion
of P defining R′ comes before the negation of R′ is used, then we can simply compute
R′ before its negation is used, and we are done. For example, consider program PTCcomp

introduced at the beginning of this chapter. Clearly, we intended for T to be defined by the
first two rules before its negation is used in the rule defining CT . Thus the first two rules
are applied before the third. Such a way of “reading” P is called a stratification of P and
is defined next.

Definition 15.2.4 A stratification of a datalog¬ program P is a sequence of datalog¬
programs P 1, . . . , P n such that for some mapping σ from idb(P ) to [1..n],

(i) {P 1, . . . , P n} is a partition of P .
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(ii) For each predicate R, all the rules in P defining R are in Pσ(R) (i.e., in the same
program of the partition).

(iii) If R(u)← . . . R′(v) . . . is a rule in P , and R′ is an idb relation, then σ(R′) ≤
σ(R).

(iv) If R(u)← . . .¬R′(v) . . . is a rule in P , and R′ is an idb relation, then σ(R′) <
σ(R).

Given a stratification P 1, . . . , P n of P , each P i is called a stratum of the stratification, and
σ is called the stratification mapping.

Intuitively, a stratification of a program P provides a way of parsing P as a sequence of
subprograms P 1, . . . , P n, each defining one or several idb relations. By (iii), if a relationR′
is used positively in the definition of R, then R′ must be defined earlier or simultaneously
with R (this allows recursion!). If the negation of R′ is used in the definition of R, then by
(iv) the definition of R′ must come strictly before that of R.

Unfortunately, not every datalog¬ program has a stratification. For example, there is
no way to “read” program P2 of Example 15.1.1 so that p is defined before q and q before
p. Programs that have a stratification are called stratifiable. Thus P2 is not stratifiable. On
the other hand, PTCcomp is clearly stratifiable: The first stratum consists of the first two
rules (defining T ), and the second stratum consists of the third rule (defining CT using T ).

Example 15.2.5 Consider the program P7 defined by

r1 S(x)← R′
1(x),¬R(x)

r2 T (x)← R′
2(x),¬R(x)

r3 U(x)← R′
3(x),¬T (x)

r4 V (x)← R′
4(x),¬S(x),¬U(x).

Then P7 has 5 distinct stratifications, namely,

{r1}, {r2}, {r3}, {r4}
{r2}, {r1}, {r3}, {r4}
{r2}, {r3}, {r1}, {r4}
{r1, r2}, {r3}, {r4}
{r2}, {r1, r3}, {r4}.

These lead to five different ways of reading the program P7. As will be seen, each of these
yields the same semantics.

There is a simple test for checking if a program is stratifiable. Not surprisingly, it
involves testing for an acyclicity condition in definitions of relations using negation. Let P
be a datalog¬ program. The precedence graph GP of P is the labeled graph whose nodes
are the idb relations of P . Its edges are the following:
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PTCcomp: T CT
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– P2: P Q
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P7: S U
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Figure 15.1: Precedence graphs for PCT , P2, and P7

• If R(u)← . . . R′(v) . . . is a rule in P , then 〈R′, R〉 is an edge in GP with label +
(called a positive edge).

• If R(u)← . . .¬R′(v) . . . is a rule in P , then 〈R′, R〉 is an edge in GP with label −
(called a negative edge).

For example, the precedence graphs for program PTCcomp, P2, and P7 are represented
in Fig. 15.1. It is straightforward to show the following (proof omitted):

Lemma 15.2.6 Let P be a program with stratification σ . If there is a path from R′ to R in
GP, then σ(R′)≤ σ(R); and if there is a path from R′ to R in GP containing some negative
edge, then σ(R′) < σ(R).

We now show how the precedence graph of a program can be used to test the stratifia-
bility of the program.

Proposition 15.2.7 A datalog¬ program P is stratifiable iff its precedence graph GP

has no cycle containing a negative edge.

Proof Consider the “only if” part. Suppose P is a datalog¬ program whose precedence
graph has a cycle R1, . . . Rm,R1 containing a negative edge, say from Rm to R1. Suppose,
toward a contradiction, that σ is a stratification mapping for P . By Lemma 15.2.6, σ(R1) <

σ(R1), because there is a path from R1 to R1 with a negative edge. This is a contradiction,
so no stratification mapping σ exists for P .

Conversely, suppose P is a program whose precedence graph GP has no cycle with
negative edges. Let ≺ be the binary relation among the strongly connected components of
GP defined as follows: C ≺ C′ if C �= C′ and there is a (positive or negative) edge in GP

from some node of C to some node of C′.
We first show that

(*) ≺ is acyclic.

Suppose there is a cycle in ≺. Then by construction of ≺, this cycle must traverse two
distinct strongly connected components, say C,C′. Let A be in C. It is easy to deduce
that there is a path in GP from some vertex in C′ to A and from A to some vertex in C′.
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Because C′ is a strongly connected component of GP, A is in C′. Thus C ⊆ C′, so C = C′,
a contradiction. Hence (*) holds.

In view of (*), the binary relation ≺ induces a partial order among the strongly
connected components of GP, which we also denote by ≺, by abuse of notation. Let
C1, . . . , Cn be a topographic sort with respect to ≺ of the strongly connected components
of GP; that is, C1 . . . Cn is the set of strongly connected components of GP and if Ci ≺ Cj ,
then i ≤ j . Finally, for each i, 1 ≤ i ≤ n, let Qi consist of all rules defining some rela-
tion in Ci. Then Q1, . . . ,Qn is a stratification of P . Indeed, (i) and (ii) in the definition
of stratification are clearly satisfied. Conditions (iii) and (iv) follow immediately from the
construction of GP and ≺ and from the hypothesis that GP has no cycle with negative edge.

Clearly, the stratifiability test provided by Proposition 15.2.7 takes time polynomial in
the size of the program P .

Verification of the following observation is left to the reader (Exercise 15.4).

Lemma 15.2.8 Let P 1, . . . , P n be a stratification of P , and let Q1, . . . ,Qm be ob-
tained as in Proposition 15.2.7. If Qj ∩ P i �= ∅, then Qj ⊆ P i. In particular, the partition
Q1, . . . ,Qm of P refines all other partitions given by stratifications of P .

Semantics of Stratified Programs

Consider a stratifiable program P with a stratification σ = P 1, . . . , P n. Using the strat-
ification σ , we can now easily give a semantics to P using the well-understood semi-
positive programs. Notice that for each program P i in the stratification, if P i uses the
negation of R′, then R′ ∈ edb(P i) [note that edb(P i) may contain some of the idb rela-
tions of P ]. Furthermore, R′ is either in edb(P ) or is defined by some P j preceding P i

[i.e., R′ ∈ ∪j<iidb(P j)]. Thus each program P i is semipositive relative to previously de-
fined relations. Then the semantics of P is obtained by applying, in order, the programs
P i. More precisely, let I be an instance over edb(P ). Define the sequence of instances

I0 = I

Ii = Ii−1 ∪ P i(Ii−1|edb(P i)), 0 < i ≤ n.

Note that Ii extends Ii−1 by providing values to the relations defined by P i; and that
P i(Ii−1|edb(P i)), or equivalently, P i(Ii−1), is the semantics of the semipositive program
P i applied to the values of its edb relations provided by Ii−1. Let us denote the final
instance In thus obtained by σ(I). This provides the semantics of a datalog¬ program under
a stratification σ .

Independence of Stratification

As shown in Example 15.2.5, a datalog¬ program can have more than one stratification.
Will the different stratifications yield the same semantics? Fortunately, the answer is yes.
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To demonstrate this, we use the following simple lemma, whose proof is left to the reader
(Exercise 15.10).

Lemma 15.2.9 Let P be a semipositive datalog¬ program and σ a stratification for P .
Then P semi−pos(I)= σ(I) for each instance I over edb(P ).

Two stratifications of a datalog¬ program are equivalent if they yield the same seman-
tics on all inputs.

Theorem 15.2.10 Let P be a stratifiable datalog¬ program. All stratifications of P are
equivalent.

Proof Let GP be the precedence graph of P and σGP
=Q1, . . . ,Qn be a stratification

constructed from GP as in the proof of Theorem 15.2.7. Let σ = P 1, . . . , P k be a stratifi-
cation of P . It clearly suffices to show that σ is equivalent to σGP

. The stratification σGP

is used as a reference because, as shown in Lemma 15.2.8, its strata are the finest possible
among all stratifications for P .

As in the proof of Theorem 15.2.7, we use the partial order ≺ among the strongly
connected components of GP and the notation introduced there. Clearly, the relation ≺ on
the Ci induces a partial order on theQi, which we also denote by ≺ (Qi ≺Qj if Ci ≺ Cj ).
We say that a sequence Qi1, . . . ,Qir of some of the Qi is compatible with ≺ if for every
l < m it is not the case that Qim ≺Qil .

We shall prove that

1. If σ ′ and σ ′′ are permutations of σGP
that are compatible with ≺, then σ ′ and σ ′′

are equivalent stratifications of P .

2. For each P i, 1 ≤ i ≤ k, there exists σi =Qi1, . . . ,Qir such that σi is a stratifica-
tion of P i, and the sequence Qi1, . . . ,Qir is compatible with ≺.

3. σ1, . . . , σk is a permutation of Q1, . . . ,Qn compatible with ≺.

Before demonstrating these, we argue that the foregoing statements (1 through 3) are
sufficient to show that σ and σGP

are equivalent. By statement 2, each σi is a stratification
of P i. Lemma 15.2.9 implies that P i is equivalent to σi. It follows that σ = P 1, . . . , P k is
equivalent to σ1, . . . , σk which, by statement 3, is a permutation of σGP

compatible with
≺. Then σ1, . . . , σk and σGP

are equivalent by statement 1, so σ and σGP
are equivalent.

Consider statement 1. Note first that one can obtain σ ′′ from σ ′ by a sequence of
exchanges of adjacent Qi,Qj such that Qi �≺Qj and Qj �≺Qi (Exercise 15.9). Thus it
is sufficient to show that for every such pair, Qi,Qj is equivalent to Qj,Qi. Because
Qi �≺Qj and Qj �≺Qi, it follows that no idb relation of Qi occurs in Qj and conversely.
Then Qi ∪Qj is a semipositive program [with respect to edb(Qi ∪Qj)] and both Qi,Qj

and Qj,Qi are stratifications of Qi ∪Qj . By Lemma 15.2.9, Qi,Qj and Qj,Qi are both
equivalent to Qi ∪Qj (as a semipositive program), so Qi,Qj and Qj,Qi are equivalent.

Statement 2 follows immediately from Lemma 15.2.8.
Finally, consider statement 3. By statement 2, each σi is compatible with ≺. Thus it

remains to be shown that, if Qm occurs in σi, Ql occurs in σj , and i < j , then Ql �≺Qm.
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Note that Ql is included in P j , and Qm is included in P i. It follows that for all relations R
defined by Qm and R′ defined by Ql, σ(R) < σ(R′), where σ is the stratification function
of P 1, . . . , P k. Hence R′ �≺ R so Ql �≺Qm.

Thus all stratifications of a given stratifiable program are equivalent. This means
that we can speak about the semantics of such a program independently of a particular
stratification. Given a stratifiable datalog¬ program P and an input I over edb(P ), we
shall take as the semantics of P on I the semantics σ(I) of any stratification σ of P . This
semantics, well defined by Theorem 15.2.10, is denoted by P strat(I). Clearly, P strat(I) can
be computed in time polynomial with respect to I.

Now that we have a well-defined semantics for stratified programs, we can verify that
for semipositive programs, the semantics coincides with the semantics already introduced.
If P is a semipositive datalog¬ program, then P is also stratifiable. By Lemma 15.2.9,
P semi−pos and P strat are equivalent.

Properties of Stratified Semantics

Stratified semantics has a procedural flavor because it is the result of an ordering of the
rules, albeit implicit. What can we say about P strat(I) from a model-theoretic point of
view? Rather pleasantly, P strat(I) is a minimal model of �P containing I. However, no
precise characterization of stratified semantics in model-theoretic terms has emerged. Some
model-theoretic properties of stratified semantics are established next.

Proposition 15.2.11 For each stratifiable datalog¬ program P and instance I over
edb(I),

(a) P strat(I) is a minimal model of �P whose restriction to edb(P ) equals I.

(b) P strat(I) is a minimal fixpoint of TP whose restriction to edb(P ) equals I.

Proof For part (a), let σ = P 1, . . . , P n be a stratification of P and I an instance over
edb(P ). We have to show that P strat(I) is a minimal model of �P whose restriction to
edb(P ) equals I. Clearly, P strat(I) is a model of �P whose restriction to edb(P ) equals I.
To prove its minimality, it is sufficient to show that, for each model J of �P ,

(**) if I ⊆ J ⊆ P strat(I) then J = P strat(I).

Thus suppose I ⊆ J ⊆ P strat(I). We prove by induction on k that

(†) P strat(I)|sch(∪i≤kP i)= J|sch(∪i≤kP i)

for each k, 1 ≤ k ≤ n. The equality of P strat(I) and J then follows from (†) with k = n.
For k = 1, edb(P 1)⊆ edb(P ) so

P strat(I)|edb(P 1)= I|edb(P 1)= J|edb(P 1).

By the definition of stratified semantics and Theorem 15.2.2, P strat(I)|sch(P 1) is the
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minimum model of �P 1 whose restriction to edb(P 1) equals P strat(I)|edb(P 1). On the
other hand, J|sch(P 1) is also a model of �P 1 whose restriction to edb(P 1) equals
P strat(I)|edb(P 1). From the minimality of P strat(I)|sch(P 1), it follows that

P strat(I)|sch(P 1)⊆ J|sch(P 1).

From (**) it then follows that P strat(I)|sch(P 1) = J|sch(P 1), which establishes (†) for
k = 1. For the induction step, suppose (†) is true for k, 1 ≤ k < n. Then (†) for k + 1 is
shown in the same manner as for the case k = 1. This proves (†) for 1 ≤ k ≤ n. It follows
that P strat(I) is a minimal model of �P whose restriction to edb(P ) equals I.

The proof of part (b) is left for Exercise 15.12.

There is another appealing property of stratified semantics that takes into account the
syntax of the program in addition to purely model-theoretic considerations. This property
is illustrated next.

Consider the two programs

P5 = {p←¬q}
P6 = {q←¬p}

From the perspective of classical logic, �P5 and �P6 are equivalent to each other and to
{p ∨ q}. However, TP5 and TP6 have different behavior: The unique fixpoint of TP5 is {p},
whereas that of TP6 is {q}. This is partially captured by the notion of “supported” as follows.

Let datalog¬ program P and input I be given. As with pure datalog, J is a model of
P iff J ⊇ TP (J). We say that J is a supported model if J ⊆ TP (J) (i.e., if each fact in J is
“justified” or supported by being the head of a ground instantiation of a rule in P whose
body is all true in J). (In the context of some input I, we say that J is supported relative
to I and the definition is modified accordingly.) This condition, which has both syntactic
and semantic aspects, captures at least some of the spirit of the immediate consequence
operator TP . As suggested in Remark 15.1.2, its impact can be annulled by adding rules of
the form p← p.

The proof of the following is left to the reader (Exercise 15.13).

Proposition 15.2.12 For each stratifiable program P and instance I over edb(P ),
P strat(I) is a supported model of P relative to I.

We have seen that stratification provides an elegant and simple approach to defining
semantics of datalog¬ programs. Nonetheless, it has two major limitations. First, it does
not provide semantics to all datalog¬ programs. Second, stratified datalog¬ programs are
not entirely satisfactory with regard to expressive power. From a computational point of
view, they provide recursion and negation and are inflationary. Therefore, as discussed
in Chapter 14, one might expect that they express the fixpoint queries. Unfortunately,
stratified datalog¬ programs fall short of expressing all such queries, as will be shown
in Section 15.4. Intuitively, this is because the stratification condition prohibits recursive
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application of negation, whereas in other languages expressing fixpoint this computational
restriction does not exist.

For these reasons, we consider another semantics for datalog¬ programs called well
founded. As we shall see, this provides semantics to all datalog¬ programs and expresses
all fixpoint queries. Furthermore, well-founded and stratified semantics agree on stratified
datalog¬ programs.

15.3 Well-Founded Semantics

Well-founded semantics relies on a fundamental revision of our expectations of the answer
to a datalog¬ program. So far, we required that the answer must provide information on the
truth or falsehood of every fact. Well-founded semantics is based on the idea that a given
program may not necessarily provide such information on all facts. Instead some facts may
simply be indifferent to it, and the answer should be allowed to say that the truth value
of those facts is unknown. As it turns out, relaxing expectations about the answer in this
fashion allows us to provide a natural semantics for all datalog¬ programs. The price is
that the answer is no longer guaranteed to provide total information.

Another aspect of this approach is that it puts negative and positive facts on a more
equal footing. One can no longer assume that ¬R(u) is true simply because R(u) is not
in the answer. Instead, both negative and positive facts must be inferred. To formalize this,
we shall introduce 3-valued instances, in which the truth value of facts can be true, false,
or unknown.

This section begins by introducing a largely declarative semantics for datalog¬ pro-
grams. Next an equivalent fixpoint semantics is developed. Finally it is shown that stratified
and well-founded semantics agree on the family of stratified datalog¬ programs.

A Declarative Semantics for Datalog¬

The aim of giving semantics to a datalog¬ program P will be to find an appropriate
3-valued model I of �P . In considering what appropriate might mean, it is useful to
recall the basic motivation underlying the logic-programming approach to negation as
opposed to the purely computational approach. An important goal is to model some form
of natural reasoning process. In particular, consistency in the reasoning process is required.
Specifically, one cannot use a fact and later infer its negation. This should be captured in
the notion of appropriateness of a 3-valued model I, and it has two intuitive aspects:

• the positive facts of I must be inferred from P assuming the negative facts in I; and

• all negative facts that can be inferred from I must already be in I.

A 3-valued model satisfying the aforementioned notion of appropriateness will be
called a 3-stable model of P . It turns out that, generally, programs have several 3-stable
models. Then it is natural to take as an answer the certain (positive and negative) facts that
belong to all such models, which turns out to yield, in some sense, the smallest 3-stable
model. This is indeed how the well-founded semantics of P will be defined.
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Example 15.3.1 The example concerns a game with states, a, b, . . . . The game is be-
tween two players. The possible moves of the games are held in a binary relation moves. A
tuple 〈a, b〉 in moves indicates that when in state a, one can choose to move to state b. A
player loses if he or she is in a state from which there are no moves. The goal is to compute
the set of winning states (i.e., the set of states such that there exists a winning strategy for
a player in this state). These are obtained in a unary predicate win.

Consider the input K with the following value for moves:

K(moves)= {〈b, c〉, 〈c, a〉, 〈a, b〉, 〈a, d〉, 〈d, e〉, 〈d, f 〉, 〈f, g〉}

Graphically, the input is represented as

b c

a d f g

e

It is seen easily that there are indeed winning strategies from states d (move to e) and
f (move to g). Slightly more subtle is the fact that there is no winning strategy from any of
states a, b, or c. A given player can prevent the other from winning, essentially by forcing
a nonterminating sequence of moves.

Now consider the following nonstratifiable program Pwin:

win(x)← moves(x, y),¬win(y)

Intuitively, Pwin states that a state x is in win if there is at least one state y that one can
move to from x, for which the opposing player loses. We now exhibit a 3-valued model J
of Pwin that agrees with K on moves. As will be seen, this will in fact be the well-founded
semantics of Pwin on input K. Instance J is such that J(moves)= K(moves) and the values
of win-atoms are given as follows:

true win(d),win(f )

false win(e),win(g)

unknown win(a),win(b),win(c)

We now embark on defining formally the well-founded semantics. We do this in three
steps. First we define the notion of 3-valued instance and extend the notion of truth value
and satisfaction. Then we consider datalog and show the existence of a minimum 3-valued
model for each datalog program. Finally we consider datalog¬ and the notion of 3-stable
model, which is the basis of well-founded semantics.

3-valued Instances Dealing with three truth values instead of the usual two requires
extending some of the basic notions like instance and model. As we shall see, this is
straightforward. We will denote true by 1, false by 0, and unknown by 1/2.
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Consider a datalog¬ program P and a classical 2-valued instance I. As was done in the
discussion of SLD resolution in Chapter 12, we shall denote by PI the program obtained
from P by adding to P unit clauses stating that the facts in I are true. Then P(I)= PI(∅).
For the moment, we shall deal with datalog¬ programs such as these, whose input is
included in the program. Recall that B(P ) denotes all facts of the form R(a1, . . . , ak),
where R is a relation and a1, . . . , ak constants occurring in P . In particular, B(PI) =
B(P, I).

Let P be a datalog¬ program. A 3-valued instance I over sch(P ) is a total mapping
from B(P ) to {0, 1/2, 1}. We denote by I1, I1/2, and I0 the set of atoms in B(P )whose truth
value is 1, 1/2, and 0, respectively. A 3-valued instance I is total, or 2-valued, if I1/2 = ∅.
There is a natural ordering ≺ among 3-valued instances over sch(P ), defined by

I ≺ J iff for each A ∈ B(P ), I(A)≤ J(A).

Note that this is equivalent to I1 ⊆ J1 and I0 ⊇ J0 and that it generalizes containment for
2-valued instances.

Occasionally, we will represent a 3-valued instance by listing the positive and negative
facts and omitting the undefined ones. For example, the 3-valued instance I, where I(p)=
1, I(q)= 1, I(r)= 1/2, I(s)= 0, will also be written as I = {p, q,¬s}.

Given a 3-valued instance I, we next define the truth value of Boolean combinations
of facts using the connectives ∨,∧,¬,←. The truth value of a Boolean combination α of
facts is denoted by Î(α), defined by

Î(β ∧ γ ) = min{Î(β), Î(γ )}
Î(β ∨ γ ) = max{Î(β), Î(γ )}
Î(¬β) = 1 − Î(β)

Î(β← γ )= 1 if Î(γ )≤ Î(β), and 0 otherwise.

The reader should be careful: Known facts about Boolean operators in the 2-valued
context may not hold in this more complex one. For instance, note that the truth value of
p← q may be different from that of p ∨¬q (see Exercise 15.15). To see that the preceding
definition matches the intuition, one might want to verify that with the specific semantics
of ← used here, the instance J of Example 15.3.1 does satisfy (the ground instantiation
of) Pwin,K. That would not be the case if we define the semantics of ← in a more standard
way; by using p← q ≡ p ∨ ¬q.

A 3-valued instance I over sch(P ) satisfies a Boolean combination α of atoms in B(P )
iff Î(α)= 1. Given a datalog(¬) program P , a 3-valued model of �P is a 3-valued instance
over sch(P ) satisfying the set of implications corresponding to the rules in ground(P ).

Example 15.3.2 Recall the program Pwin of Example 15.3.1 and the input instance K
and output instance J presented there. Consider these ground sentences:

win(a)← moves(a, d),¬win(d)

win(a)← moves(a, b),¬win(b).
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The first is true for J, because Ĵ(¬win(d))= 0, Ĵ(moves(a, d))= 1, Ĵ(win(a))= 1/2, and
1/2 ≥ 0. The second is true because Ĵ(¬win(b))= 1/2, Ĵ(moves(a, b))= 1, Ĵ(win(a))=
1/2, and 1/2 ≥ 1/2.

Observe that, on the other hand,

Ĵ(win(a) ∨ ¬(moves(a, b) ∧ ¬win(b)))= 1/2.

3-valued Minimal Model for Datalog We next extend the definition and semantics of
datalog programs to the context of 3-valued instances. Although datalog programs do not
contain negation, they will now be allowed to infer positive, unknown, and false facts.
The syntax of a 3-extended datalog program is the same as for datalog, except that the
truth values 0, 1/2, and 1 can occur as literals in bodies of rules. Given a 3-extended
datalog program P , the 3-valued immediate consequence operator 3-TP of P is a mapping
on 3-valued instances over sch(P ) defined as follows. Given a 3-valued instance I and
A ∈ B(P ), 3-TP (I)(A) is

1 if there is a rule A← body in ground(P ) such that Î(body)= 1,

0 if for each rule A← body in ground(P ), Î(body)= 0 (and, in particular, if there is
no rule with A in head),

1/2 otherwise.

Example 15.3.3 Consider the 3-extended datalog program P = {p← 1/2; p← q, 1/2;
q← p, r; q← p, s; s← q; r ← 1}. Then

3-TP ({¬p,¬q,¬r,¬s})= {¬q, r,¬s}
3-TP ({¬q, r,¬s}) = {r,¬s}
3-TP ({r,¬s}) = {r}
3-TP ({r}) = {r}.

In the following, 3-valued instances are compared with respect to ≺. Thus “least,”
“minimal,” and “monotonic” are with respect to ≺ rather than the set inclusion used for
classical 2-valued instances. In particular, note that the minimum 3-valued instance with
respect to ≺ is that where all atoms are false. Let ⊥ denote this particular instance.

With the preceding definitions, extended datalog programs on 3-valued instances
behave similarly to classical programs. The next lemma can be verified easily (Exer-
cise 15.16):

Lemma 15.3.4 Let P be a 3-extended datalog program. Then

1. 3−TP is monotonic and the sequence {3-T iP (⊥)}i>0 is increasing and converges
to the least fixpoint of 3-TP ;
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2. P has a unique minimal 3-valued model that equals the least fixpoint of 3-TP .

The semantics of an extended datalog program is the minimum 3-valued model of P .
Analogous to conventional datalog, we denote this by P(⊥).

3-stable Models of Datalog¬
We are now ready to look at datalog¬ programs and formally define 3-stable models of a
datalog¬ program P . We “bootstrap” to the semantics of programs with negation, using the
semantics for 3-extended datalog programs described earlier. Let I be a 3-valued instance
over sch(P ). We reduce the problem to that of applying a positive datalog program, as
follows. The positivized ground version of P given I, denoted pg(P, I), is the 3-extended
datalog program obtained from ground(P ) by replacing each negative premise ¬A by
Î(¬A) (i.e., 0, 1, or 1/2). Because all negative literals in ground(P ) have been replaced by
their truth value in I, pg(P, I) is now a 3-extended datalog program (i.e, a program without
negation). Its least fixpoint pg(P, I)(⊥) contains all the facts that are consequences of P
by assuming the values for the negative premises as given by I. We denote pg(P, I)(⊥)
by conseqP (I). Thus the intuitive conditions required of 3-stable models now amount to
conseqP (I)= I.

Definition 15.3.5 Let P be a datalog¬ program. A 3-valued instance I over sch(P ) is
a 3-stable model of P iff conseqP (I) = I.

Observe an important distinction between conseqP and the immediate consequence
operator used for inflationary datalog¬. For inflationary datalog¬, we assumed that ¬Awas
true as long as A was not inferred. Here we just assume in such a case that A is unknown
and try to prove new facts. Of course, doing so requires the 3-valued approach.

Example 15.3.6 Consider the following datalog¬ program P :

p←¬r
q←¬r, p
s←¬t
t ← q,¬s
u←¬t, p, s

The program has three 3-stable models (represented by listing the positive and negative
facts and leaving out the unknown facts):

I1 = {p, q, t,¬r,¬s,¬u}
I2 = {p, q, s,¬r,¬t,¬u}
I3 = {p, q,¬r}

Let us check that I3 is a 3-stable model of P . The program P ′ = pg(P, I3) is
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p← 1

q← 1, p

s← 1/2

t ← q, 1/2

u← 1/2, p, s

The minimum 3-valued model of pg(P, I3) is obtained by iterating 3-TP ′(⊥) up to
a fixpoint. Thus we start with ⊥ = {¬p,¬q,¬r,¬s,¬t,¬u}. The first application of
3-TP ′ yields 3-TP ′(⊥)= {p,¬q,¬r,¬t,¬u}. Next (3-TP ′)2(⊥)= {p, q,¬r,¬t}. Finally
(3-TP ′)3(⊥)= (3-TP ′)4(⊥)= {p, q,¬r}. Thus

conseqP (I3)= pg(P, I3)(⊥)= (3-TP ′)3(⊥)= I3,

and I3 is a 3-stable model of P .
The reader is invited to verify that in Example 15.3.1, the instance J is a 3-stable model

of the program Pwin,K for the input instance K presented there.

As seen from the example, datalog¬ programs generally have several 3-stable models.
We will show later that each datalog¬ program has at least one 3-stable model. Therefore
it makes sense to let the final answer consist of the positive and negative facts belonging
to all 3-stable models of the program. As we shall see, the 3-valued instance so obtained is
itself a 3-stable model of the program.

Definition 15.3.7 Let P be a datalog¬ program. The well-founded semantics of P is
the 3-valued instance consisting of all positive and negative facts belonging to all 3-stable
models of P . This is denoted by Pwf (∅),or simply, Pwf . Given datalog¬ program P and
input instance I, Pwf

I (∅) is denoted Pwf (I).

Thus the well-founded semantics of the program P in Example 15.3.6 is Pwf (∅) =
{p, q,¬r}. We shall see later that in Example 15.3.1, Pwf

win(K)= J.

A Fixpoint Definition

Note that the preceding description of the well-founded semantics, although effective, is
inefficient. The straightforward algorithm yielded by this description involves checking
all possible 3-valued instances of a program, determining which are 3-stable models, and
then taking their intersection. We next provide a simpler, efficient way of computing the
well-founded semantics. It is based on an “alternating fixpoint” computation that converges
to the well-founded semantics. As a side-effect, the proof will show that each datalog¬
program has at least one 3-stable model (and therefore the well-founded semantics is
always defined), something we have not proven. It will also show that the well-founded
model is itself a 3-stable model, in some sense the smallest.

The idea of the computation is as follows. We define an alternating sequence {Ii}i≥0 of
3-valued instances that are underestimates and overestimates of the facts known in every



15.3 Well-Founded Semantics 391

3-stable model of P . The sequence is as follows:

I0 =⊥
Ii+1 = conseqP (Ii).

Recall that ⊥ is the least 3-valued instance and that all facts have value 0 in ⊥. Also note
that each of the Ii just defined is a total instance. This follows easily from the following
facts (Exercise 15.17):

• if I is total, then conseqP (I) is total; and

• the Ii are constructed starting from the total instance ⊥ by repeated applications of
conseqP .

The intuition behind the construction of the sequence {Ii}i≥0 is the following. The
sequence starts with ⊥, which is an overestimate of the negative facts in the answer (it
contains all negative facts). From this overestimate we compute I1 = conseqP (⊥), which
includes all positive facts that can be inferred from ⊥. This is clearly an overestimate of
the positive facts in the answer, so the set of negative facts in I1 is an underestimate of the
negative facts in the answer. Using this underestimate of the negative facts, we compute
I2 = conseqP (I1), whose positive facts will now be an underestimate of the positive facts
in the answer. By continuing the process, we see that the even-indexed instances provide
underestimates of the positive facts in the answer and the odd-indexed ones provide under-
estimates of the negative facts in the answer. Then the limit of the even-indexed instances
provides the positive facts in the answer and the limit of the odd-indexed instances provides
the negative facts in the answer. This intuition will be made formal later in this section.

It is easy to see that conseqP (I) is antimonotonic. That is, if I ≺ J, then conseqP (J)≺
conseqP (I) (Exercise 15.17). From this and the facts that ⊥ ≺ I1 and ⊥ ≺ I2, it immedi-
ately follows that, for all i > 0,

I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1.

Thus the even subsequence is increasing and the odd one is decreasing. Because there
are finitely many 3-valued instances relative to a given program P , each of these se-
quences becomes constant at some point. Let I∗ denote the limit of the increasing sequence
{I2i}i≥0, and let I∗ denote the limit of the decreasing sequence {I2i+1}i≥0. From the afore-
mentioned inequalities, it follows that I∗ ≺ I∗. Moreover, note that conseqP (I∗)= I∗ and
conseqP (I

∗)= I∗. Finally let I∗∗ denote the 3-valued instance consisting of the facts known
in both I∗ and I∗; that is,

I∗∗(A)=
{ 1 if I∗(A)= I∗(A)= 1

0 if I∗(A)= I∗(A)= 0 and
1/2 otherwise.

Equivalently, I∗∗ = (I∗)1 ∪ (I∗)0. As will be seen shortly, I∗∗ = Pwf (∅). Before proving this,
we illustrate the alternating fixpoint computation with several examples.
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Example 15.3.8

(a) Consider again the program in Example 15.3.6. Let us perform the alternat-
ing fixpoint computation described earlier. We start with I0 = ⊥ = {¬p,¬q,
¬r,¬s,¬t,¬u}. By applying conseqP , we obtain the following sequence of
instances:

I1 = {p, q,¬r, s, t, u},
I2 = {p, q,¬r,¬s,¬t,¬u},
I3 = {p, q,¬r, s, t, u},
I4 = {p, q,¬r,¬s,¬t,¬u}.

Thus I∗ = I4 = {p, q,¬r,¬s,¬t,¬u} and I∗ = I3 = {p, q,¬r, s, t, u}. Finally
I∗∗ = {p, q,¬r}, which coincides with the well-founded semantics of P com-
puted in Example 15.3.6.

(b) Recall now Pwin and input K of Example 15.3.1. We compute I∗∗ for the program
Pwin,I. Note that for I0 the value of all move atoms is false, and for each j ≥ 1,
Ij agrees with the input K on the predicate moves; thus we do not show the move
atoms here. For the win predicate, then, we have

I1 = {win(a),win(b),win(c),win(d),¬win(e),win(f ),¬win(g)}
I2 = {¬win(a),¬win(b),¬win(c),win(d),¬win(e),win(f ),¬win(g)}
I3 = I1

I4 = I2.

Thus

I∗ = I2 = {¬win(a),¬win(b),¬win(c),win(d),¬win(e),win(f ),¬win(g)}
I∗ = I1 = {win(a),win(b),win(c),win(d),¬win(e),win(f ),¬win(g)}
I∗∗ = {win(d),¬win(e),win(f ),¬win(g)},

which is the instance J of Example 15.3.1.

(c) Consider the database schema consisting of a binary relation G and a unary
relation good and the following program defining bad and answer:

bad(x) ←G(y, x),¬good(y)

answer(x)←¬bad(x)

Consider the instance K over G and good, where

K(G) = {〈b, c〉, 〈c, b〉, 〈c, d〉, 〈a, d〉, 〈a, e〉}, and

K(good)= {〈a〉}.
We assume that the facts of the database are added as unit clauses to P , yielding
PK. Again we perform the alternating fixpoint computation for PK. We start with
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I0 =⊥ (containing all negated atoms). Applying conseqPK
yields the following

sequence {Ii}i>0:

bad answer

I0 ∅ ∅
I1 {¬a, b, c, d, e} {a, b, c, d, e}
I2 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d,¬e}
I3 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d, e}
I4 {¬a, b, c, d,¬e} {a,¬b,¬c,¬d, e}

We have omitted [as in (b)] the facts relating to the edb predicates G and good,
which do not change after step 1.

Thus I∗∗ = I∗ = I∗ = I3 = I4. Note that P is stratified and its well-founded
semantics coincides with its stratified semantics. As we shall see, this is not
accidental.

We now show that the fixpoint construction yields the well-founded semantics for
datalog¬ programs.

Theorem 15.3.9 For each datalog¬ program P ,

1. I∗∗ is a 3-stable model of P .

2. Pwf (∅)= I∗∗.

Proof For statement 1, we need to show that conseqP (I
∗∗)= I∗∗. We show that for every

fact A, if I∗∗(A)= ε ∈ {0, 1/2, 1}, then conseqP (I
∗∗)(A)= ε. From the antimonotonicity of

conseqP , the fact that I∗ ≺ I∗∗ ≺ I∗ and conseqP (I∗)= I∗, conseqP (I
∗)= I∗, it follows that

I∗ ≺ conseqP (I
∗∗)≺ I∗. If I∗∗(A)= 0, then I∗(A)= 0 so conseqP (I

∗∗)(A)= 0; similarly for
I∗∗(A)= 1. Now suppose that I∗∗(A)= 1/2. It is sufficient to prove that conseqP (I

∗∗)(A)≥
1/2. [It is not possible that conseqP (I

∗∗)(A) = 1. If this were the case, the rules used to
infer A involve only facts whose value is 0 or 1. Because those facts have the same value
in I∗ and I∗, the same rules can be used in both pg(P, I∗) and pg(P, I∗) to infer A, so
I∗(A)= I∗(A)= I∗∗(A)= 1, which contradicts the hypothesis that I∗∗(A)= 1/2.]

We now prove that conseqP (I
∗∗)(A) ≥ 1/2. By the definition of I∗∗, I∗(A) = 0 and

I∗(A)= 1. Recall that conseqP (I∗)= I∗, so conseqP (I∗)(A)= 1. In addition, conseqP (I∗)
is the limit of the sequence {3-T ipg(P,I∗)}i>0. Let stage(A) be the minimum i such that
3-T ipg(P,I∗)(A)= 1. We prove by induction on stage(A) that conseqP (I

∗∗)(A) ≥ 1/2. Sup-
pose that stage(A) = 1. Then there exists in ground(P ) a rule of the form A←, or
one of the form A←¬B1, . . . ,¬Bn, where I∗(Bj) = 0, 1 ≤ j ≤ n. However, the first
case cannot occur, for otherwise conseqP (I

∗)(A) must also equal 1 so I∗(A) = 1 and
therefore I∗∗(A) = 1, contradicting the fact that I∗∗(A) = 1/2. By the same argument,
I∗(Bj) = 1, so I∗∗(Bj) = 1/2, 1 ≤ j ≤ n. Consider now pg(P, I∗∗). Because I∗∗(Bj) =
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1/2, 1 ≤ j ≤ n, the second rule yields conseqP (I
∗∗)(A)≥ 1/2. Now suppose that the state-

ment is true for stage(A)= i and suppose that stage(A)= i + 1. Then there exists a rule
A← A1 . . . Am¬B1 . . .¬Bn such that I∗(Bj)= 0 and 3-T ipg(P,I∗)(Ak)= 1 for each j and
k. Because I∗(Bj)= 0, I∗∗(Bj)≤ 1/2 so I∗∗(¬Bj)≥ 1/2. In addition, by the induction hy-
pothesis, conseqP (I

∗∗)(Ak)≥ 1/2. It follows that conseqP (I
∗∗)(A)≥ 1/2, and the induction

is complete. Thus conseqP (I
∗∗)= I∗∗ and I∗∗ is a 3-stable model of P .

Consider statement 2. We have to show that the positive and negative facts in I∗∗ are
those belonging to every 3-stable model M of P . Because I∗∗ is itself a 3-stable model of
P , it contains the positive and negative facts belonging to every 3-stable model of P . It
remains to show the converse (i.e., that the positive and negative facts in I∗∗ belong to every
3-stable model of P ). To this end, we first show that for each 3-stable model M of P and
i ≥ 0,

(‡) I2i ≺ M ≺ I2i+1.

The proof is by induction on i. For i = 0, we have

I0 =⊥≺ M.

Because conseqP is antimonotonic, conseqP (M) ≺ conseqP (I0). Now conseqP (I0) = I1

and because M is 3-stable, conseqP (M)= M. Thus we have

I0 ≺ M ≺ I1.

The induction step is similar and is omitted.
By (‡), I∗ ≺ M ≺ I∗. Now a positive fact in I∗∗ is in I∗ and so is in M because I∗ ≺ M.

Similarly, a negative fact in I∗∗ is in I∗ and so is in M because M ≺ I∗.

Note that the proof of statement 2 above formalizes the intuition that the I2i provide
underestimates of the positive facts in all acceptable answers (3-stable models) and the
I2i+1 provide underestimates of the negative facts in those answers. The fact that Pwf (∅)
is a minimal model of P is left for Exercise 15.19.

Variations of the alternating fixpoint computation can be obtained by starting with
initial instances different from ⊥. For example, it may make sense to start with the content
of the edb relations as an initial instance. Such variations are sometimes useful for technical
reasons. It turns out that the resulting sequences still compute the well-founded semantics.
We show the following:

Proposition 15.3.10 Let P be a datalog¬ program. Let {Ii}i≥0 be defined in the same
way as the sequence {Ii}i≥0, except that I0 is some total instance such that

⊥≺ I0 ≺ Pwf (∅).

Then
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I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1

and (using the same notation as before),

I
∗
∗ = Pwf (∅).

Proof Let us compare the sequences {Ii}i≥0 and {Ii}i≥0. Because I0 ≺ Pwf (∅) and I0 is
total, it easily follows that I0 ≺ I∗. Thus ⊥= I0 ≺ I0 ≺ I∗. From the antimonotonicity of
the conseqP operator and the fact that conseq2

P (I∗)= I∗, it follows that I2i ≺ I2i ≺ I∗ for
all i, i ≥ 0. Thus I∗ = I∗. Then

I
∗ = conseqP (I∗)= conseqP (I∗)= I∗

so I
∗
∗ = I∗∗ = Pwf (∅).

As noted earlier, the instances in the sequence {Ii}i≥0 are total. A slightly different
alternating fixpoint computation formulated only in terms of positive and negative facts
can be defined. This is explored in Exercise 15.25.

Finally, the alternating fixpoint computation of the well-founded semantics involves
looking at the ground rules of the given program. However, one can clearly compute the
semantics without having to explicitly look at the ground rules. We show in Section 15.4
how the well-founded semantics can be computed by a fixpoint query.

Well-Founded and Stratified Semantics Agree

Because the well-founded semantics provides semantics to all datalog¬ programs, it does
so in particular for stratified programs. Example 15.3.8(c) showed one stratified program
for which stratified and well-founded semantics coincide. Fortunately, as shown next,
stratified and well-founded semantics are always compatible. Thus if a program is stratified,
then the stratified and well-founded semantics agree.

A datalog¬ program P is said to be total if Pwf (I) is total for each input I over edb(P ).

Theorem 15.3.11 If P is a stratified datalog¬ program, then P is total under the well-
founded semantics, and for each 2-valued instance I over edb(P ), Pwf (I)= P strat(I).

Proof Let P be stratified, and let input I0 over edb(P ) be fixed. The idea of the proof is
the following. Let J be a 3-stable model of PI0. We shall show that J = P strat(I0). This will
imply that P strat(I0) is the unique 3-stable model for PI0. In particular, it contains only the
positive and negative facts in all 3-stable models of PI0 and is thus Pwf (I0).

For the proof, we will need to develop some notation.

Notation for the stratification: Let P 1, . . . , P n be a stratification of P . Let P 0 = ∅I0 (i.e.,
the program corresponding to all of the facts in I0). For each k in [0, n],

let Sk = idb(P k) (S0 is edb(P ));
S[0,k] = ∪i∈[0,k]Si; and
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Ik = (P 1 ∪ · · · ∪ P k)strat(I0)= In|S[0,k] (and, in particular, P strat(I0)= In).

Notation for the 3-stable model: Let P̂ = pg(PI0, J). Recall that because J is 3-stable for
PI0,

J = conseq
P̂
(J)= lim

i≥0
3-T i

P̂
(∅).

For each k in [0, n],

• let Jk = J|S[0,k]; and

• P̂ k+1 = pg(P k+1
Jk

, Jk)= pg(P k+1
Jk

, J).

[Note that pg(P k+1
Jk

, Jk)= pg(P k+1
Jk

, J) because all the negations in P k+1 are over predi-
cates in S[0,k].]

To demonstrate the result, we will show by induction on k ∈ [0, n] that

(*) ∃lk ≥ 0 such that ∀i ≥ 0, Jk = 3-T lk+i
P̂

(∅) | S[0,k] = Ik.

Clearly, for k = n, (*) demonstrates the result.
The case where k = 0 is satisfied by setting l0 = 1, because J0 = 3-T 1+i

P̂
(∅)|S0 = I0

for each i ≥ 0.
Suppose now that (*) is true for some k ∈ [0, n− 1]. Then for each i ≥ 0, by the choice

of P̂ k+1, the form of P k+1, and (*),

(1) T i
P k+1(Ik)|Sk+1 ⊆ 3-T i+1

P̂ k+1(∅)|Sk+1 ⊆ T i+1
Pk+1(Ik)|Sk+1.

(Here and later, ⊆ denotes the usual 2-valued containment between instances; this is well
defined because all instances considered are total, even if J is not.) In (1), the 3-T i+1

P̂ k+1

and T i+1
Pk+1 terms may not be equal, because the positive atoms of Ik = Jk are available

when applying TPk+1 the first time but are available only during the second application of
3-T

P̂ k+1. On the other hand, the T i
P k+1 and 3-T i+1

P̂ k+1 terms may not be equal (e.g., if there is

a rule of the form A← in P k+1).
By (1) and finiteness of the input, there is some m≥ 0 such that for each i ≥ 0,

(2) In|Sk+1 = T m+i
P k+1(Ik)|Sk+1 = 3-T m+i

P̂ k+1(∅)|Sk+1.

This is almost what is needed to complete the induction, except that P̂ k+1 is used instead
of P̂ . However, observe that for each i ≥ 0,

(3) 3-T i
P̂
(∅)|Sk+1 ⊆ 3-T i

P̂ k+1(∅)|Sk+1

because 3-T i
P̂
(∅)|S[0,k] ⊆ Jk for each i ≥ 0 by the induction hypothesis. Finally observe

that for each i ≥ 0,

(4) 3-T i
P̂ k+1(∅)|Sk+1 ⊆ 3-T i+lk

P̂
(∅)|Sk+1
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because 3-T lk
P̂
(∅)|S[0,k] contains all of the positive atoms of Jk.

Then for each i ≥ 0 we have

3-T m+i
P̂ k+1(∅)|Sk+1 ⊆ 3-T m+i+lk

P̂
(∅)|Sk+1 by (4)

⊆ 3-T m+i+lk
P̂ k+1 (∅)|Sk+1 by (3)

⊆ 3-T m+i
P̂ k+1(∅)|Sk+1 by (2).

It follows that

(5) 3-T m+i
P̂ k+1(∅)|Sk+1 = 3-T m+i+lk

P̂
(∅)|Sk+1.

Set l(k+1) = lk +m. Combining (2) and (5), we have, for each i ≥ 0,

J|Sk+1 = 3-T
l(k+1)+i
P̂

(∅)|Sk+1 = In|Sk+1.

Together with the inductive hypothesis, we obtain for each i ≥ 0 that

J|S[0,k+1] = 3-T
l(k+1)+i
P̂

(∅)|S[0,k+1] = In|S[0,k+1],

which concludes the proof.

As just seen, each stratifiable program is total under the well-founded semantics. How-
ever, as indicated by Example 15.3.8(b), a datalog¬ program P may yield a 3-valued model
Pwf (I) on some inputs. Furthermore, there are programs that are not stratified but whose
well-founded models are nonetheless total (see Exercise 15.22). Unfortunately, there can
be no effective characterization of those datalog¬ programs whose well-founded semantics
is total for all input databases (Exercise 15.23). One can find sufficient syntactic conditions
that guarantee the totality of the well-founded semantics, but this quickly becomes a te-
dious endeavor. It has been shown, however, that for each datalog¬ program P, one can
find another program whose well-founded semantics is total on all inputs and that produces
the same positive facts as the well-founded semantics of P.

15.4 Expressive Power

In this section, we examine the expressive power of datalog¬ with the various semantics
for negation we have considered. More precisely, we focus on semipositive, stratified, and
well-founded semantics. We first look at the relative power of these semantics and show
that semipositive programs are weaker than stratified, which in turn are weaker than well
founded. Then we look at the connection with languages studied in Chapter 14 that also
use recursion and negation. We prove that well-founded semantics can express precisely
the fixpoint queries.

Finally we look at the impact of order on expressive power. An ordered database
contains a special binary relation succ that provides a successor relation on all constants
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in the active domain. Thus the constants are ordered by succ and in fact can be viewed
as integers. The impact of assuming that a database is ordered is examined at length
in Chapter 17. Rather surprisingly, we show that in the presence of order, semipositive
programs are as powerful as programs with well-founded semantics. In particular, all three
semantics are equivalent and express precisely the fixpoint queries.

We begin by briefly noting the connection between stratified datalog¬ and relational
calculus (and algebra). To see that stratified datalog¬ can express all queries in CALC,
recall the nonrecursive datalog¬ (nr-datalog¬) programs introduced in Chapter 5. Clearly,
these are stratified datalog¬ programs in which recursion is not allowed. Theorem 5.3.10
states that nr-datalog¬ (with one answer relation) and CALC are equivalent. It follows that
stratified datalog¬ can express all of CALC. Because transitive closure of a graph can be
expressed in stratified datalog¬ but not in CALC (see Proposition 17.2.3), it follows that
stratified datalog¬ is strictly stronger than CALC.

Stratified Datalog Is Weaker than Fixpoint

Let us look at the expressive power of stratified datalog¬. Computationally, stratified pro-
grams provide recursion and negation and are inflationary. Therefore one might expect that
they express the fixpoint queries. It is easy to see that all stratified datalog¬ are fixpoint
queries (Exercise 15.28). In particular, this shows that such programs can be evaluated in
polynomial time. Can stratified datalog¬ express all fixpoint queries? Unfortunately, no.
The intuitive reason is that in stratified datalog¬ there is no recursion through negation, so
the number of applications of negation is bounded. In contrast, fixpoint queries allow re-
cursion through negation, so there is no bound on the number of applications of negation.
This distinction turns out to be crucial. We next outline the main points of the argument,
showing that stratified datalog¬ is indeed strictly weaker than fixpoint.

The proof uses a game played on so-called game trees. The game is played on a given
tree. The nodes of the tree are the possible positions in the game, and the edges are the
possible moves from one position to another. Additionally, some leaves of the tree are
labeled black. The game is between two players. A round of the game starting at node
x begins with Player I making a move from x to one of its children y. Player II then makes
a move from y, etc. The game ends when a leaf is reached. Player I wins if Player II picks
a black leaf. For a given tree (with labels), Player I has a winning strategy for the game
starting at node x if he or she can win starting at x no matter how Player II plays. We are
interested in programs determining whether there is such a winning strategy.

The game tree is represented as follows. The set of possible moves is given by a binary
relation move and the set of black nodes by a unary relation black. Consider the query
winning (not to be confused with the predicate win of Example 15.3.1), which asks if Player
I has a winning strategy starting at the root of the tree. We will define a set of game trees G
such that

(i) the query winning on the game trees in G is definable by a fixpoint query, and

(ii) for each stratified program P , there exist game treesG,G′ ∈ G such that winning
is true on G and false on G′, but P cannot distinguish between G and G′.

Clearly, (ii) shows that the winning query on game trees is not definable by a stratified
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datalog¬ program. The set G of game trees is defined next. It consists of the Gl,k and G′
l,k

defined by induction as follows:

• G0,k andG′
0,k have no moves and just one node, labeled black inG0,k and not labeled

in G′
0,k.

• Gi+1,k consists of a copy of G′
i,k, k disjoint copies of Gi,k, and a new root di+1. The

moves are the union of the moves in the copies of G′
i,k and Gi,k together with new

moves from the root di+1 to the roots of the copies. The labels remain unchanged.

• G′
i+1,k consists of k + 1 disjoint copies of Gi,k and a new root d ′i+1 from which

moves are possible to the roots of the copies of Gi,k.

The game treesG4,1 andG′
4,1 are represented in Fig. 15.2. It is easy to see that winning

is true on the game trees G2i,k and false on game trees G′
2i,k, i > 0 (Exercise 15.30).

We first note that the query winning on game trees in G can be defined by a fixpoint
query. Consider

ϕ(T )= (∃y)[Move(x, y) ∧ (∀z)(Move(y, z)→ Black(z))]

∨ (∃y)[Move(x, y) ∧ (∀z)(Move(y, z)→ T (z))].

G4.1

G′4.1

Root

Root

Figure 15.2: Game trees
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It is easy to verify that winning is defined by µT (ϕ(T ))(root), where root is the root of the
game tree (Exercise 15.30). Next we note that the winning query is not expressible by any
stratified datalog¬ program. To this end, we use the following result, stated without proof.

Lemma 15.4.1 For each stratified datalog¬ program P , there exist i, k such that

P(Gi,k)(winning)= P(G′
i,k)(winning).

The proof of Lemma 15.4.1 uses an extension of Ehrefeucht-Fraissé games (the games
are described in Chapter 17). The intuition of the lemma is that, to distinguish between
Gi,k and G′

i,k for i and k sufficiently large, one needs to apply more negations than the
fixed number allowed by P . Thus no stratified program can distinguish between all the
Gi,k and G′

i,k. In particular, it follows that the fixpoint query winning is not equivalent to
any stratified datalog¬ program. Thus we have the following result, settling the relationship
between stratified datalog¬ and the fixpoint queries.

Theorem 15.4.2 The class of queries expressible by stratified datalog¬ programs is
strictly included in the fixpoint queries.

Remark 15.4.3 The game tree technique can also be used to prove that the number of
strata in stratified datalog¬ programs has an impact on expressive power. Specifically, let
Strati consist of all queries expressible by stratified datalog¬ programs with i strata. Then it
can be shown that for all i, Strati ⊂ Strati+1. In particular, semipositive datalog¬ is weaker
than stratified datalog¬.

Well-Founded Datalog¬ Is Equivalent to Fixpoint

Next we consider the expressive power of datalog¬ programs with well-founded semantics.
We prove that well-founded semantics can express precisely the fixpoint queries. We begin
by showing that the well-founded semantics can be computed by a fixpoint query. More
precisely, we show how to compute the set of false, true, and undefined facts of the answer
using a while+ program (see Chapter 14 for the definition of while+ programs).

Theorem 15.4.4 Let P be a datalog¬ program. There exists a while+ program w with
input relations edb(P ), such that

1. w contains, for each relation R in sch(P ), three relation variables Rεanswer, where
ε ∈ {0, 1/2, 1};

2. for each instance I over edb(P ), u ∈ w(I)(Rεanswer) iff Pwf (I)(R(u)) = ε, for
ε ∈ {0, 1/2, 1}.

Crux Let P be a datalog¬ program. The while+ program mimics the alternating fix-
point computation of Pwf . Recall that this involves repeated applications of the operator
conseqP , resulting in the sequence



15.4 Expressive Power 401

I0 ≺ I2 . . .≺ I2i ≺ I2i+2 ≺ . . .≺ I2i+1 ≺ I2i−1 ≺ . . .≺ I1.

Recall that the Ii are all total instances. Thus 3-valued instances are only required to
produce the final answer from I∗ and I∗ at the end of the computation, by one last first-
order query.

It is easily verified that while+ can simulate one application of conseqP on total
instances (Exercise 15.27). The only delicate point is to make sure the computation is
inflationary. To this end, the program w will distinguish between results of even and odd
iterations of conseqP by having, for each R, an odd and even version R0

odd and R1
even. R0

odd
holds at iteration 2i + 1 the negative facts of R in I2i+1, and R1

even holds at iteration 2i
the positive facts of R in I2i. Note that both R0

odd and R1
even are increasing throughout the

computation.
We elaborate on the simulation of the operator conseqP on a total instance I. The

programw will have to distinguish between facts in the input I, used to resolve the negative
premises of rules in P , and those inferred by applications of 3-TP . Therefore for each
relation R, the while+ program will also maintain a copy R̄even and R̄odd to hold the facts
produced by consecutive applications of 3-TP in the even and odd cases, respectively. More
precisely, the R̄odd hold the positive facts inferred from input I2i represented in R1

even, and
the R̄even hold the positive facts inferred from input I2i+1 represented in R0

odd. It is easy
to write a first-order query defining one application of 3-TP for the even or odd cases.
Because the representations of the input are different in the even and odd cases, different
programs must be used in the two cases. This can be iterated in an inflationary manner,
because the set of positive facts inferred in consecutive applications of 3-TP is always
increasing. However, the R̄odd and R̄even have to be initialized to ∅ at each application
of conseqP . Because the computation must be inflationary, this cannot be done directly.
Instead, timestamping must be used. The initialization of the R̄odd and R̄even is simulated
by timestamping each relation with the current content ofR1

even andR0
odd, respectively. This

is done in a manner similar to the proofs of Chapter 14.

We now exhibit a converse of Theorem 15.4.4, showing that any fixpoint query can es-
sentially be simulated by a datalog¬ program with well-founded semantics. More precisely,
the positive portion of the well-founded semantics yields the same facts as the fixpoint
query.

Example 15.4.6 illustrates the proof of this result.

Theorem 15.4.5 Let q be a fixpoint query over input schema R. There exists a datalog¬
program P such that edb(P )= R, P has an idb relation answer, and for each instance I
over R, the positive portion of answer in Pwf (I) coincides with q(I).

Crux We will use the definition of fixpoint queries by iterations of positive first-order
formulas. Let q be a fixpoint query. As discussed in Chapter 14, there exists a CALC
formula ϕ(T ), positive in T , such that q is defined by µT (ϕ(T ))(u), where u is a vector of
variables and constants. Consider the CALC formula ϕ(T ). As noted earlier in this section,
there is an nr-datalog¬ program Pϕ with one answer relation R′ such that Pϕ is equivalent
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to ϕ(T ). Because ϕ(T ) is positive in T , along any path in the syntax tree of ϕ(T ) ending
with atom T there is an even number of negations. This is also true of paths in GPϕ .

Consider the precedence graph GPϕ of Pϕ. Clearly, one can construct Pϕ such that
each idb relation except T is used in the definition of exactly one other idb relation, and
all idb relations are used eventually in the definition of the answer R′. In other words, for
each idb relation R other than T , there is a unique path in GPϕ from R to R′. Consider the
paths from T to some idb relation R in Pϕ. Without loss of generality, we can assume that
all paths have the same number of negations (otherwise, because all paths to T have an
even number of negations, additional idb relations can be introduced to pad the paths with
fewer negations, using rules that perform redundant double negations). Let the rank of an
idb relation R in Pϕ be the number of negations on each path leading from T to R in GPϕ .
Now let P be the datalog¬ program obtained from Pϕ as follows:

• replace the answer relation R′ by T ;

• add one rule answer(v)← T (u),where v is the vector of distinct variables occurring
in u, in order of occurrence.

The purpose of replacing R′ by T is to cause program Pϕ to iterate, yielding µT (ϕ(T )).
The last rule is added to perform the final selection and projection needed to obtain the
answer µT (ϕ(T ))(u). Note that, in some sense, P is almost stratified, except for the fact
that the result T is fed back into the program.

Consider the alternating fixpoint sequence {Ii}i≥0 in the computation of Pwf (I). Sup-
pose R′ has rank q in Pϕ, and let R be an idb relation of Pϕ whose rank in Pϕ is r ≤ q.
Intuitively, there is a close correspondence between the sequence {Ii}i≥0 and the iterations
of ϕ, along the following lines: Each application of conseqP propagates the correct result
from relations of rank r in Pϕ to relations of rank r + 1. There is one minor glitch, how-
ever: In the fixpoint computation, the edb relations are given, and even at the first iteration,
their negation is taken to be their complement; in the alternating fixpoint computation, all
negative literals, including those involving edb relations, are initially taken to be true. This
results in a mismatch. To fix the problem, consider a variation of the alternating fixpoint
computation of Pwf (I) defined as follows:

I0 = I ∪ ¬.{R(a1, . . . , an) | R ∈ idb(P ), R(a1, . . . , an) ∈ B(P, I)}
Ii+1 = conseqP (Ii).

Clearly, ⊥≺ I0 ≺ Pwf (I). Then, by Proposition 15.3.10, I
∗
∗ = Pwf (I).

Now the following can be verified by induction for each idb relation R of rank r:

For each i, (Iiq+r)1 contains exactly the facts of R true in Pϕ(ϕ
i(∅)).

Intuitively, this is so because each application of conseqP propagates the correct result
across one application of negation to an idb predicate. Because R′ has rank q, it takes q
applications to simulate a complete application of Pϕ. In particular, it follows that for each
i, (Iiq)1 contains in T the facts true in ϕi(∅).

Thus (I∗)1 contains in T the facts true in µT (ϕ(T )). Finally answer is obtained by a
simple selection and projection from T using the last rule in P and yields µT (ϕ(T ))(u).
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In the preceding theorem, the positive portion of answer for Pwf (I) coincides with
q(I). However, Pwf (I) is not guaranteed to be total (i.e., it may contain unknown facts).
Using a recent result (not demonstrated here), a program Q can be found such that Qwf

always provides a total answer, and such that the positive facts of Pwf and Qwf coincide
on all inputs.

Recall from Chapter 14 that datalog¬ with inflationary semantics also expresses pre-
cisely the fixpoint queries. Thus we have converged again, this time by the deductive data-
base path, to the fixpoint queries. This bears witness, once more, to the naturalness of this
class. In particular, the well-founded and inflationary semantics, although very different,
have the same expressive power (modulo the difference between 3-valued and 2-valued
models).

Example 15.4.6 Consider the fixpoint query µgood(ϕ(good))(x), where

ϕ(good)= ∀y(G(y, x)→ good(y)).

Recall that this query, also encountered in Chapter 14, computes the “good” nodes of the
graph G (i.e., those that cannot be reached from a cycle). The nr-datalog¬ program Pϕ
corresponding to one application of ϕ(good) is the one exhibited in Example 15.3.8(c):

bad(x)←G(y, x),¬good(y)

R′(x) ←¬bad(x)

Note that bad is negative in Pϕ and has rank one, and good is positive. The answer R′ has
rank two. The program P is as follows:

bad(x) ←G(y, x),¬good(y)

good(x) ←¬bad(x)

answer(x)← good(x)

Consider the input graph

G= {〈b, c〉, 〈c, b〉, 〈c, d〉, 〈a, d〉, 〈a, e〉}.

The consecutive values of ϕi(∅) are

ϕ(∅) = {a},
ϕ2(∅)= {a, e},
ϕ3(∅)= {a, e}.

Thus µgood(ϕ(good))(x) yields the answer {a, e}. Consider now the alternating fixpoint
sequence in the computation of Pwf on the same input (only the positive facts of bad and
good are listed, because G does not change and answer = good).
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bad good

I0 ∅ ∅
I1 {b, c, d, e} {a, b, c, d, e}
I2 ∅ {a}
I3 {b, c, d} {a, b, c, d, e}
I4 ∅ {a, e}
I5 {b, c, d} {a, b, c, d, e}
I6 ∅ {a, e}

Thus

ϕ(∅) = (I2)
1(good),

ϕ2(∅)= (I4)
1(good)

and

(I4)
1(answer)= µgood(ϕ(good))(x).

The relative expressive power of the various languages discussed in this chapter is
summarized in Fig. 15.3. The arrows indicate strict inclusion. For a view of these languages
in a larger context, see also Figs. 18.4 and 18.5 at the end of Part E.

The Impact of Order

Finally we look at the impact of order on the expressive power of the various datalog¬
semantics. As we will discuss at length in Chapter 17, the assumption that databases are
ordered can have a dramatic impact on the expressive power of languages like fixpoint
or while. The datalog¬ languages are no exception. The effect of order is spectacular.
With this assumption, it turns out that semipositive datalog¬ is (almost) as powerful as
stratified datalog¬ and datalog¬ with well-founded semantics. The “almost” comes from a

well-founded semantics datalog¬ ≡ fixpoint semantics datalog¬
⇑

stratified datalog¬
⇑

semipositive datalog¬
⇑

datalog

Figure 15.3: Relative expressive power of datalog(¬) languages
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technicality concerning the order: We also need to assume that the minimum and maximum
constants are explicitly given. Surprisingly, these constants, which can be computed with
a first order query if succ is given, cannot be computed with semipositive programs (see
Exercise 15.29).

The next lemma states that semipositive programs express the fixpoint queries on
ordered databases with min and max (i.e., databases with a predicate succ providing a
successor relation among all constants, and unary relations min and max containing the
smallest and the largest constant).

Lemma 15.4.7 The semipositive datalog¬ programs express precisely the fixpoint
queries on ordered databases with min and max.

Crux Let q be a fixpoint query over database schema R. Because q is a fixpoint query,
there is a first-order formula ϕ(T ), positive in T , such that q is defined by µT (ϕ(T ))(u),
where u is a vector of variables and constants. Because T is positive in ϕ(T ), we can
assume that ϕ(T ) is in prenex normal formQ1x1Q2x2 . . .Qkxk(ψ), whereψ is a quantifier
free formula in disjunctive normal form and T is not negated in ψ . We show by induction
on k that there exists a semipositive datalog¬ program Pϕ with an idb relation answerϕ
defining µT (ϕ(T )) [the last selection and projection needed to obtain the final answer
µT (ϕ(T ))(u) pose no problem]. Suppose k = 0 (i.e., ϕ = ψ). Then Pϕ is the nr-datalog¬
program corresponding to ψ , where the answer relation is T . Because ψ is quantifier free
and T is not negated in ψ , Pϕ is clearly semipositive. Next suppose the statement is true
for some k ≥ 0, and let ϕ(T ) have quantifier depth k + 1. There are two cases:

(i) ϕ = ∃xψ(x, v), where ψ has quantifier depth k. Then Pϕ contains the rules
of Pψ , where T is replaced in heads of rules by a new predicate T ′ and one
additional rule

T (v)← T ′(x, v).

(ii) ϕ = ∀xψ(x, v), where ψ has quantifier depth k. Then Pϕ consists, again, of Pψ ,
where T is replaced in heads of rules by a new predicate T ′, with the following
rules added:

R′(x, v) ← T ′(x, v),min(x)

R′(x′, v)← R′(x, v), succ(x, x′), T ′(x′, v)
T (v) ← R′(x, v),max(x),

where R′ is a new auxiliary predicate. Thus the program steps through all x’s
using the successor relation succ, starting from the minimum constant. If the
maximum constant is reached, then T ′(x, v) is satisfied for all x, and T (v) is
inferred.

This completes the induction.

As we shall see in Chapter 17, fixpoint expresses on ordered databases exactly the
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queries computable in time polynomial in the size of the database (i.e., qptime). Thus we
obtain the following result. In comparing well-founded semantics with the others, we take
the positive portion of the well-founded semantics as the answer.

Theorem 15.4.8 Stratified datalog¬ and datalog¬ with well-founded semantics are
equivalent on ordered databases and express exactly qptime. They are also equivalent to
semipositive datalog¬ on ordered databases with min and max and express exactly qptime.

15.5 Negation as Failure in Brief

In our presentation of datalog in Chapter 12, we saw that the minimal model and least
fixpoint semantics have an elegant proof-theoretic counterpart based on SLD resolution.
One might naturally wonder if such a counterpart exists in the case of datalog¬. The
answer is yes and no. Such a proof-theoretic approach has indeed been proposed and
is called negation as failure. This was originally developed for logic programming and
predates stratified and well-founded semantics. Unfortunately, the approach has two major
drawbacks. The first is that it results in a proof-building procedure that does not always
terminate. The second is that it is not the exact counterpart of any other existing semantics.
The semantics that has been proposed as a possible match is “Clark’s completion,” but the
match is not perfect and Clark’s completion has its own problems. We provide here only a
brief and informal presentation of negation as failure and the related Clark’s completion.

The idea behind negation as failure is simple. We would like to infer a negative fact
¬A ifA cannot be proven by SLD resolution. Thus¬Awould then be proven by the failure
to prove A. Unfortunately, this is generally noneffective because SLD derivations may be
arbitrarily long, and so one cannot check in finite time2 that there is no proof of A by SLD
resolution. Instead we have to use a weaker notion of negation by failure, which can be
checked. This is done as follows. A fact ¬A is proven if all SLD derivations starting from
the goal ← A are finite and none produces an SLD refutation for ← A. In other words,
A finitely fails. This procedure applies to ground atoms A only. It gives rise to a proof
procedure called SLDNF resolution. Briefly, SLDNF resolution extends SLD resolution as
follows. Refutations of positive facts proceed as for SLD resolution. Whenever a negative
ground goal←¬A has to be proven, SLD resolution is applied to← A, and ¬A is proven
if the SLD resolution finitely fails for ← A. The idea of SLDNF seems appealing as the
proof-theoretic version of the closed world assumption. However, as illustrated next, it
quickly leads to significant problems.

Example 15.5.1 Consider the usual program PTC for transitive closure of a graph:

T (x, y)←G(x, y)

T (x, y)←G(x, z), T (z, y)

2 Because databases are finite, one can develop mechanisms to bound the expansion. We ignore this
aspect here.
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Consider the instance I where G has edges {〈a, b〉, 〈b, a〉, 〈c, a〉}. Clearly, {〈a, c〉} is not
in the transitive closure of G, and so not in T , by the usual datalog semantics. Suppose
we wish to prove the fact ¬T (a, c), using negation as failure. We have to show that SLD
resolution finitely fails on T (a, c), with the preceding program and input. Unfortunately,
SLD resolution can enter a negative loop when applied to ← T (a, c). One obtains the
following SLD derivation:

1. ← T (a, c);

2. ←G(a, z), T (z, c), using the second rule;

3. ← T (b, c), using the fact G(a, b);

4. ←G(b, z), T (z, c) using the second rule;

5. ← T (a, c) using the fact G(b, a).

Note that the last goal is the same as the first, so this can be extended to an infinite
derivation. It follows that SLD resolution does not finitely fail on ← T (a, c), so SLDNF
does not yield a proof of ¬T (a, c). Moreover, it has been shown that this does not depend
on the particular program used to define transitive closure. In other words, there is no
datalog¬ program that under SLDNF can prove the positive and negative facts true of the
transitive closure of a graph.

The preceding example shows that SLDNF can behave counterintuitively, even in
some simple cases. The behavior is also incompatible with all the semantics for negation
that we have discussed so far. Thus one cannot hope for a match between SLDNF and these
semantics.

Instead a semantics called Clark’s completion has been proposed as a candidate match
for negation as failure. It works as follows. For a datalog¬ program P , the completion of
P, comp(P), is constructed as follows. For each idb predicate R, each rule

ρ : R(u)← L1(v1), . . . , Ln(vn)

defining R is rewritten so there is a uniform set of distinct variables in the rule head and so
all free variables in the body are existentially quantified:

ρ′ : R(u′)←∃v′(x1 = t1 ∧ · · · ∧ xk = tk ∧ L1(v1) ∧ · · · ∧ Ln(vn)).

(If the head of ρ has distinct variables for all coordinates, then the equality atoms can be
avoided. If repeated variables or constants occur, then equality must be used.) Next, if the
rewritten rules for R are ρ′1, . . . , ρ

′
l , the completion of R is formed by

∀u′(R(u′)↔ body(ρ′1) ∨ · · · ∨ body(ρ′l)).

Intuitively, this states that ground atom R(w) is true iff it is supported by one of the rules
defining R. Finally the completion of P is the set of completions of all idb predicates of P ,
along with the axioms of equality, if needed.
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The semantics of P is now defined by the following: A is true iff it is a logical conse-
quence of comp(P ). A first problem now is that comp(P ) is not always consistent; in fact,
its consistency is undecidable. What is the connection between SLDNF and Clark’s com-
pletion? Because SLDNF is consistent (it clearly cannot prove A and ¬A) and comp(P )
is not so always, SLDNF is not always complete with respect to comp(P ). For consistent
comp(P ), it can be shown that SLDNF resolution is sound. However, additional conditions
must be imposed on the datalog¬ programs for SLDNF resolution to be complete.

Consider again the transitive closure program PTC and input instance I of Exam-
ple 15.5.1. Then the completion of T is equivalent to

T (x, y)↔G(x, y) ∨ ∃z(G(x, z) ∧ T (z, y)).

Note that neither T (a, c) nor ¬T (a, c) are consequences of comp(PTC,I).
In summary, negation as failure does not appear to provide a convincing proof-

theoretic counterpart to the semantics we have considered. The search for more successful
proof-theoretic approaches is an active research area. Other proposals are described briefly
in the Bibliographic Notes.
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Exercises

Exercise 15.1

(a) Show that, for datalog¬ programs P , the immediate consequence operator TP is not
always monotonic.

(b) Exhibit a datalog¬ program P (using negation at least once) such that TP is mono-
tonic.

(c) Show that it is decidable, given a datalog¬ program P , whether TP is monotonic.

Exercise 15.2 Consider the datalog¬ program P3 = {p←¬r; r←¬p;p←¬p, r}. Verify
that TP3 has a least fixpoint, but TP3 does not converge when starting on ∅.

Exercise 15.3

(a) Exhibit a datalog¬ program P and an instance K over sch(P ) such that K is a model
of $P but not a fixpoint of TP .

(b) Show that, for datalog¬ programs P , a minimal fixpoint of TP is not necessarily a
minimal model of $P and, conversely, a minimal model of $P is not necessarily a
minimal fixpoint of TP .

Exercise 15.4 Prove Lemma 15.2.8.

Exercise 15.5 Consider a database for the Parisian metro and bus lines, consisting of two re-
lations Metro[Station, Next-Station] and Bus[Station, Next-Station]. Write stratifiable datalog¬
programs to answer the following queries.

(a) Find the pairs of stations 〈a, b〉 such that one can go from a to b by metro but not by
bus.

(b) A pure bus path from a to b is a bus itinerary from a to b such that for all consecutive
stops c, d along the way, one cannot go from c to d by metro. Find the pairs of
stations 〈a, b〉 such that there is a pure bus path from a to b.

(c) Find the pairs of stations 〈a, b〉 such that b can be reached from a by some combina-
tion of metro or bus, but not by metro or bus alone.

(d) Find the pairs of stations 〈a, b〉 such that b can be reached from a by some combina-
tion of metro or bus, but there is no pure bus path from a to b.

(e) The metro is useless in a bus path from a to b if by taking the metro at any interme-
diate point c one can return to c but not reach any other station along the path. Find
the pairs of stations 〈a, b〉 such that the metro is useless in all bus paths connecting
a and b.
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Exercise 15.6 The semantics of stratifiable datalog¬ programs can be extended to infinite
databases as follows. Let P be a stratifiable datalog¬ program and let σ = P 1 . . . P n be a
stratification for P . For each (finite or infinite) instance I over edb(P ), σ(I) is defined similarly
to the finite case. More precisely, consider the sequence

I0 = I

Ii = P i(Ii−1|edb(P i))

where

P i(Ii−1|edb(P i))= ∪j>0T
j

Pi
(Ii−1|edb(P i)).

Note that the definition is now noneffective because P i(Ii−1|edb(P i)) may be infinite.
Consider a database consisting of one binary relation succ providing a successor relation on

an infinite set of constants. Clearly, one can identify these constants with the positive integers.

(a) Write a stratifiable datalog¬ program defining a unary relation prime containing all
constants in succ corresponding to primes.

(b) Write a stratifiable datalog¬ program P defining a 0-ary relation Fermat, which is
true iff Fermat’s Last Theorem3 is true. (No shortcuts, please: The computation of
the program should provide a proof of Fermat’s Last Theorem, not just coincidence
of truth value!)

Exercise 15.7 Prove Theorem 15.2.2.

Exercise 15.8 A datalog¬ program is nonrecursive if its precedence graph is acyclic. Show
that every nonrecursive stratifiable datalog¬ program is equivalent to an nr-datalog¬ program,
and conversely.

Exercise 15.9 Let (A,<) be a partially ordered set. A listing a1, . . . , an of the elements in
A is compatible with < iff for i < j it is not the case that aj < ai. Let σ ′, σ ′′ be listings of A
compatible with<. Prove that one can obtain σ ′′ from σ ′ by a sequence of exchanges of adjacent
elements al, am such that al �< am and am �< al.
Exercise 15.10 Prove Lemma 15.2.9.

Exercise 15.11 (Supported models) Prove that there exist stratified datalog¬ programs P1, P2
such that sch(P1)= sch(P2), $P1 ≡$P2, and there is a minimal model I of $P1 such that I is a
supported model for P1, but not for P2. (In other words, the notion of supported model depends
not only on $P , but also on the syntax of P .)

Exercise 15.12 Prove part (b) of Proposition 15.2.11.

Exercise 15.13 Prove Proposition 15.2.12.

♠Exercise 15.14 [Bid91b] (Local stratification) The following extension of the notion of strat-
ification has been proposed for general logic programs [Prz86]. This exercise shows that local
stratification is essentially the same as stratification for the datalog¬ programs considered in this
chapter (i.e., without function symbols).

3 Fermat’s Last Theorem: There is no n > 2 such that the equation an + bn = cn has a solution in the
positive integers.
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A datalog¬ program P is locally stratified iff for each I over edb(P ), ground(PI) is strat-
ified. [An example of a locally stratified logic program with function symbols is {even(0)←;
even(s(x))←¬even(x)}.] The semantics of a locally stratified program P on input I is the
semantics of the stratified program ground(PI).

(a) Show that, if the rules of P contain no constants, then P is locally stratified iff it is
stratified.

(b) Give an example of a datalog¬ program (with constants) that is locally stratified but
not stratified.

(c) Prove that, for each locally stratified datalog¬ program P , there exists a stratified
datalog¬ program equivalent to P .

Exercise 15.15 Let α and β be propositional Boolean formulas (using ∧,∨,¬,→). Prove the
following:

(a) If α and β are equivalent with respect to 3-valued instances, then they are equivalent
with respect to 2-valued instances.

(b) If α and β are equivalent with respect to 2-valued instances, they are not necessarily
equivalent with respect to 3-valued instances.

Exercise 15.16 Prove Lemma 15.3.4.

Exercise 15.17 Let P be a datalog¬ program. Recall the definition of positivized ground
version of P given I, denoted pg(P, I), where I is a 3-valued instance. Prove the following:

(a) If I is total, then pg(P, I) is total.

(b) Let {Ii}i≥0 be the sequence of instances defined by

I0 =⊥
Ii+1 = pg(P, Ii)(⊥)= conseqP (Ii).

Prove that

I0 ≺ I2 · · · ≺ I2i ≺ I2i+2 ≺ · · · ≺ I2i+1 ≺ I2i−1 ≺ · · · ≺ I1.

Exercise 15.18 Exhibit a datalog¬ program that yields the complement of the transitive clo-
sure under well-founded semantics.

Exercise 15.19 Prove that for each datalog¬ program P and instance I over edb(P ), Pwf (I)
is a minimal 3-valued model of P whose restriction to edb(P ) equals I.

♠Exercise 15.20 A total 3-stable model of a datalog¬ program P is called a stable model of P
[GL88] (also called a default model [BF87, BF88]).

(a) Provide examples of datalog¬ programs that have (1) no stable models, (2) a unique
stable model, and (3) several stable models.

(b) Show that Pwf is total iff all 3-stable models are total.

(c) Prove that, if Pwf is total, then P has a unique stable model, but the converse is false.

♠Exercise 15.21 [BF88] Let P be a datalog¬ program and I an instance over edb(P ). Prove
that the problem of determining whether PI has a stable model is np-complete in the size of PI.
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Exercise 15.22 Give an example of a datalog¬ program P such that P is not stratified but
Pwf is total.

.Exercise 15.23 Prove that it is undecidable if the well-founded semantics of a given datalog¬
program P is always total. That is, it is undecidable whether, for each instance I over
edb(P ), PwfI is total.

♠Exercise 15.24 [VanGRS88] This exercise provides an alternative (and historically first) defi-
nition of well-founded semantics. LetL be a ground literal. The complement of L is¬A ifL= A
and A if L=¬A. If I is a set of ground literals, we denote by ¬.I the set of complements of the
literals in I. A set I of ground literals is consistent iff I ∩¬.I= ∅. Let P be a datalog¬ program.
The immediate consequence operator TP of P is extended to operate on sets of (positive and
negative) ground literals as follows. Let I be a set of ground literals. TP (I) consists of all literals
A for which there is a ground rule of P , A← L1, . . . , Lk, such that Li ∈ I for each i. Note that
TP can produce an inconsistent set of literals, which therefore does not correspond to a 3-valued
model. Now let I be a set of ground literals and J a set of positive ground literals. J is said to be
an unfounded set of P with respect to I if for each A ∈ J and ground rule r of P with A in the
head, at least one of the following holds:

• the complement of some literal in the body of r is in I; or

• some positive literal in the body of r is in J.

Intuitively, this means that if all atoms of I are assumed true and all atoms in J are assumed
false, then no atom of J is true under one application of TP .

Let the greatest unfounded set of P with respect to I be the union of all unfounded sets of
P with respect to I, denoted UP(I). Next consider the operator WP on sets of ground literals
defined by

WP(I)= TP (I) ∪ ¬.UP (I).

Prove the following:

(a) The greatest unfounded set UP(I) of P with respect to I is an unfounded set.

(b) The operator WP is monotonic (with respect to set inclusion).

(c) The least fixpoint of WP is consistent.

(d) The least fixpoint of WP equals Pwf .

♠Exercise 15.25 [VanG89] Let P be a datalog¬ program. If I is a set of ground literals, let
P(I) = T ωP (I), where TP is the immediate consequence operator on sets of ground literals
defined in Exercise 15.24. Furthermore, P(I) denotes the complement of P(I) [i.e., B(P, I)−
P(I)]. Consider the sequence of sets of negative facts defined by

N0 = ∅,
Ni+1 =¬.P (¬.P (Ni)).

The intuition behind the definition is the following. N0 is an underestimate of the set of negative
facts in the well-founded model. Then P(N) is an underestimate of the positive facts, and the
negated complement ¬.P (N) is an overestimate of the negative facts. Using this overestimate,
one can infer an overestimate of the positive facts, P(¬.P (N)). Therefore¬.P (¬.P (N)) is now
a new underestimate of the negative facts containing the previous underestimate. So {Ni}i≥0 is
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an increasing sequence of underestimates of the negative facts, which converges to the negative
facts in the well-founded model. Formally prove the following:

(a) The sequence {Ni}i≥0 is increasing.

(b) Let N be the limit of the sequence {Ni}i≥0 and K = N∪P(N). Then K = Pwf .

(c) Explain the connection between the sequence {Ni}i≥0 and the sets of negative facts
in the sequence {Ii}i≥0 defined in the alternating fixpoint computation of Pwf in the
text.

(d) Suppose the definition of the sequence {Ni}i≥0 is modified such that N0 = ¬.B(P )
(i.e., all facts are negative at the start). Show that for each i ≥ 0, Ni =¬.(I2i)

0.

Exercise 15.26 Let P be a datalog¬ program. Let TP be the immediate consequence operator
on sets of ground literals, defined in Exercise 15.24, and let T̄P be defined by T̄P (I)= I∪ TP (I).
Given a set I of ground literals, let P(I) denote the limit of the increasing sequence {T̄ iP (I)}i>0.
A set I− of negative ground literals is consistent with respect to P if P(I−) is consistent. I−
is maximally consistent with respect to P if it is maximal among the sets of negative literals
consistent with P . Investigate the connection between maximal consistency, 3-stable models,
and well-founded semantics:

(a) Is ¬.I0 maximally consistent for every 3-stable model I of P ?

(b) Is P(I−) a 3-stable model of P for every I− that is maximally consistent with respect
to P ?

(c) Is ¬.(Pwf )0 the intersection of all sets I− that are maximally consistent with respect
to P ?

Exercise 15.27 Refer to the proof of Lemma 15.4.4.

(a) Outline a proof that conseqP can be simulated by a while+ program.

(b) Provide a full description of the timestamping technique outlined in the proof of
Lemma 15.4.4.

Exercise 15.28 Show that every query definable by stratified datalog¬ is a fixpoint query.

Exercise 15.29 Consider an ordered database (i.e., with binary relation succ providing a
successor relation on the constants). Prove that the minimum and maximum constants cannot
be computed using a semipositive program.

.Exercise 15.30 Consider the game trees and winning query described in Section 15.4.

(a) Show that winning is true on the game trees G2i,k and false on the game trees G′2i,k,
for i > 0.

(b) Prove that the winning query on game trees is defined by the fixpoint query exhibited
in Section 15.4.


